如何培养学生的数学思维

时间:2025-12-23 19:36:59 好文 我要投稿

如何培养学生的数学思维精华【15篇】

如何培养学生的数学思维1

  直觉思维是人的大脑对一件事不经过分析、推理,直接作出的判断、设想,我们平常所说的灵感、顿悟也是直觉思维的一种。数缺形时少直觉,形缺数时难入微。 直觉思维具有快速性、直接性、跳跃性等特点,同时具有不可靠性,学生在高中阶段解决数学问题需要逻辑性思维和直接性思维相互结合,帮助学生快速而准确地解决数学问题。 在高中数学教学中培养学生的直觉思维,可以简约解题步骤、创造解题方法、增强学生自信,让学生的思维更加敏捷。下面结合自己的教学实践就在高中数学教学中培养学生的直觉思维谈点体会。

如何培养学生的数学思维精华【15篇】

  一、扎实学生基本功

  学生在解决数学问题中的直觉,是在扎实的基础知识和基本技能的基础上产生的,虽具有偶然性,但不是凭空臆造的。 学生只有具备扎实的基本功,在解题中才会迸发智慧的火花,在关键点激发出灵感,结合逻辑思维高效率地解决问题。 高中阶段的数学语言的描述具有很强的抽象性,理性知识逐渐加重,与初中阶段的数学相比具有很强的独立性。因此,高中数学教师在教学过程中要运用各种有效的教学方法,让学生牢固掌握数学知识。 在高中数学教学中,教师要培养学生的学习兴趣和良好的学习习惯,加强培养学生的基本数学方法,使学生能掌握真正属于自己的数学学习方法,让他们认真对待每一节课,无论是概念课、习题课还是复习课,学生都能使用合理的学习方法听好每一节课。 教师要帮助学生掌握正确的学习方法,把学习的主动权还给学生,在学习中逐渐培养他们自己的数学能力,不断尝试各种学习方法,变接受式学习为主动式学习,让他们成为学习的主人,全面系统地掌握高中阶段的数学基础知识和基本方法,并获得适合自己的学习数学的方法。

  二、开阔学生的视野

  培养高中生的数学直觉思维,不但要求数学的基础知识和基本解题技能,还应扩大数学的知识面,以强化学生的直觉思维。 虽然高中生面临着高考,但是在教学中适当扩展学生的知识面,让学生的大脑对教材中没有出现而与之相关的概念有个印象,可以帮助学生在学习过程中产生灵感。如,在数学教学中介绍有关高等数学知识,既可以让继续深造的学生了解即将学习的知识,又可以开阔学生的视野,让学生产生学习数学的兴趣,为学生的'直觉思维有所依据。 在数学教学中,教师一定要结合教材本身的特点和内容,有目的、有意识地提供给学生知识,活跃严谨的课堂气氛,扩大学生的知识面,培养学生的数学思维,让他们具有逻辑思维的同时具有直觉思维。 课外知识虽然有助于直觉思维的形成,但要在学生学好必要知识的基础上适当扩展学生的视野,不仅可以依靠教师的讲解,还可以自主进行学习和阅读,在课外丰富自己的知识,加强直觉思维的培养。

  三、重视解题训练解题训练

  可以培养学生的直觉思维。 学生通过同类试题的训练,可以培养他们的观察力和洞察力,再遇到同类问题时思维会更加敏捷,直觉的准确性也会增加。 在解题训练中,教师要鼓励学生大胆设想,找出其中合理的部分给予表扬,让学生的直觉思维得到爱护,对于设想不周到的部分,教师要及时进行引导,让学生了解其原因,让学生为下次的直觉作好充足准备,发展学生的直觉思维。 教师还可以直接在教学中提出直觉思维,帮助学生正确运用直觉思维,明确直觉思维在解题中的作用。 例如,高考中选择题的解答,四个选项中有一个选项是正确的,如果我们把所有选择题的每一个选项都进行详细分析,就无法把握全卷,最后会因为没有做完或无法复查而出现许多不必要的失分。 在复习过程中,教师可以让学生对选择题进行系统练习,总结迅速而准确解决选择题的方法,并在合适的选项中合理运用直觉思维,对比详细分析解答与运用直觉思维解答的利弊,让学生勇于用创造性的方法解决问题。

  四、激发学生的灵感

  灵感是思维的源泉,教师在教学中要创设情境激发学生的灵感,让学生凭直觉解决问题。 在数学的历史长流中,出现了很多由于一时的灵感而发展出新科学的数学家。 灵感往往出现在一瞬间,它是在人们丰富的知识和经验的基础上闪现在人们大脑中的,对学生创造性的学习有很大帮助,是学生发展的一个重要转折点。 例如,在学习几何知识时,教师通过多媒体展示多种几何图形,让学生对各种几何图形产生印象,再遇到关于某个几何问题时,便可以在大脑中闪现已有的印象,为产生灵感作好铺垫。 高中数学学科严谨科学,在大部分学生的意识中都是逻辑性较强的学科,可以培养学生的逻辑思维能力,学生也习惯于用逻辑思维来分析、推理有关问题。 教师在教学过程中可运用逻辑思维和直觉思维相结合的方法引导学生学习数学知识。

  总之,在高中数学教学中培养学生的直觉思维,符合高中生的思维习惯,有利于为社会培养创造性的人才。 帮助学生快速解决数学问题,让学生对数学问题进行大胆猜想,是新课程标准下提高学生思维能力的途径。 教师要在教学中培养学生的直觉思维,促使学生全面发展。

如何培养学生的数学思维2

  创新思维最本质的特性是求异性,而求异思维又包括逆向思维和发散思维两种。下面本人结合数学教学,谈一谈如何培养以逆向思维和发散思维为核心的创新思维。

  一、培养学生的逆向思维

  1.设计互逆式问题,培养学生逆向思维的意识。

  在课堂教学中,除了正面讲授外,还要有意识地挖掘小学数学教材中蕴含着的丰富的互逆因素,精心设计互逆式问题,打破学生思维中的定势,逐步增加逆向思维的意识。

  如在教学“小数点位置移动引起小数大小变化”时,当学生总结出第一个结论:“小数点向右移动一位、两位、三位……原数就扩大10倍、100倍、1000倍……”后,教师可提出“根据这个结论,反过来想一想可得出什么结论呢?”(生:小数点向左移动一位、两位、三位……原数就缩小10倍、100倍、1000倍……)以上提问旨在打破学生思维的定势,使学生的思维一直处于顺向和逆向的积极活动之中。这样,不仅使学生对此知识辨析得更清楚,而且还逐步培养了学生逆向思维的意识。

  2.引导学生学会用逆向思维解题,激发逆向思维的兴趣。

  在解答数学问题时,如果正面求解感到困难,甚至难以下手时,可以引导学生从反面去考虑,这时往往会很快找到解题思路。所以在教学中应精心设计教案,启发引导学生从知识的正用转向知识的逆用,教会学生从正反面去考虑问题,培养学生思维的灵活性和变通性。

  如在讲解“甲乙两车同时从两地开出,相向而行,甲车每小时行36千米,两车相遇时,甲车行了全程的,乙车5小时行完全程,甲车需几小时才能行完全程?”此题若从一般思路去引导学生,显得很麻烦,且不易于学生理解,于是教师可引导学生进行逆向思维:在相遇时(同样多的时间里),甲行了全程的,可知道甲乙的路程比是多少?速度比又是多少呢?(6:7)再过来想一想,在同一路程(指全程)里甲与乙的时间比又是多少呢?(7:6)这一引导使学生突然醒悟,思想一转立即想出解题的'方法:5=(时)。由此可见,若能引导学生学会用逆向思维解题,不但可减少运算量,优化解题过程,提高解题能力,而且会让学生感到成功的喜悦,从而激发了学生逆向思维的兴趣。

  3.引导学生学会逆向思考,促进逆向思维习惯的形成。

  为进一步打破学生禁锢于正向思维的定势,培养起双向思维的良好习惯,教师在教学中应加以逐步启发引导,适时点拨,提高学生互逆思维转换能力。在教学中,充分利用课本中的素材,进行逆向思维训练。在学生完成作业后,要求必须还要回过头来验算其解法是否正确,如学生解出一道应用题后,则要求学生以求出的问题为已知条件,把原题的一个已知条件当作问题验算此题。

  二、培养学生的发散性思维

  1.一空多填。

  把唯一性的填空改编成一空多填式进行发散思维的培养。如在教完了20以内的进位加法后,为使学生更熟练计算进位加法,安排一组填空,要求其尽量多填,使等式成立:8+5=□+□,□+3=6+□,□+□=6+5,9+□=□+7。

  2.一问多答。

  教学中,数学概念、法则、性质和定理,让学生从不同的角度刻画和描述。如学了三角形的知识后,让学生对三条边都相等的三角形进行描述,会有如下答案:等边三角形;特殊的等腰三角形;特殊的锐角三角形;特殊的三角形。

  3.一题多问。

  只给出已知条件,让其探求结果的可能性。如:“由已知黄花60朵,红花55朵”,可以提出不同的多个问题来,分别让学生列式求出黄花和红花朵数之和、差、倍比关系(黄花朵数是红花朵数的几倍,红花朵数是(或比)黄花的(或少)几分之几,黄花与红花朵数之比,黄花、红花分别与总数之间的倍比关系等)。

  4.一题多解。

  一题多解的训练是培养学生发散思维的一种好方法。通过纵横发散、知识串联、综合沟通,达到举一反三、融会贯通。一题多解包括两个含义:一题有多种解答和一题有多种解法。如:教学“有余数的除法”时,进行这样的训练,把24个苹果放在盘子里,每盘放2个或2个以上,有几种放法。

  培养学生发散思维,教师还要抓“想象”训练。想象思维是在形象思维的基础上通过大量的观念、表象创造出来的新形象或新观念的思维活动,它可以克服思维定势的消极影响,使学生可以运用直觉想、跳出框框想、触类旁通想、举一反三想、四面八方想等。在概念教学中,就常常借助想象进行发散性思维的训练。例如,一位教师在教学“体积”的概念时,先进行了挤牙膏游戏活动,通过此游戏使学生理解了物体占据空间有大有小的基础上,然后让学生进行想象。“哪些物体占据的空间较大呢?”有的学生想到了高大的楼房;有的学生想到了海水;还有的学生想到了卡通片里的大力士等等。接着老师又问:“哪些物体占据的空间较小呢?”有的学生想到了蚂蚁;有的学生想到了灰尘;还有的学生想到了水里面的微生物……这就是借助“想象”的发散,使学生对体积这一概念有了较深刻的理解和感知。

如何培养学生的数学思维3

  在小学数学教学的过程中,在培养学生初步的逻辑思维能力的同时,也要有意识地培养学生的发散思维能力。总结了以下四点:

  一、鼓励独创

  在分析和解决问题的过程中,学生能别出心裁地提出新异的想法和解法,这是思维独创性的表现。尽管小学生的独创从总体上看是处于低层次的,但它却蕴育着未来的大发明、大创造,教师应满腔热情地鼓励他们别出心裁地思考问题,大胆地提出与众不同的意见与质疑,独辟蹊径地解决问题,这样才能使学生思维从求异、发散向创新推进。如解答“某玩具厂生产一批儿童玩具,原计划每天生产60件,7天完成任务,实际只用6天就全部完成了。实际每天比原计划多生产多少件玩具?”一题时,照常规解法,先求出总任务有多少件,实际每天生产多少件,然后求出实际每天比原计划多生产多少件,列式为60X7÷6-60=10(件)。

  而有一个学生却说:“只须60÷6就行了”。他理由是:“这一天的任务要在6天内完成所以要多做10件。”从他的回答中,可以看出他的思路是跳跃的,省略了许多分析的步骤。他是这样想的:7天任务6天完成,时间提前了1天,自然这一天的任务(60件)也必须分配在6天内完成,所以,同样得60÷6=10,就是实际每天比计划多做的件数了。毫无疑问,这种独创性应该给予鼓励。独创往往蕴含于求异与发散之中,经常诱导学生思维发散,才有可能出现超出常规的独创;反之,独创性又丰富了发散思维,促使思维不断地向横向与纵向发散。

  二、多种形式的训练

  在小学数学教学过程中,教师可结合教学内容和学生的实际情况,采取多种形式的训练,培养学生思维的敏捷性和灵活性,以达到诱导学生思维发散,培养发散思维能力的目的。

  1.一题多变。对题中的条件、问题、情节作各种扩缩、顺逆、对比或叙述形式的变化,让学生在各种变化了的情境中,从各种不同角度认识数量关系。

  2.一图多问。引导学生观察同一事物时,要从不同的角度、不同的方面仔细地观察,认识事物,理解知识,这样既能提高学生思维的灵活性,又能培养学生的发散思维能力。

  3.一题多议。提供某种数学情境,调度学生多方面的旧知、技能或经验,组织议论,引起思维火花的撞击。

  4.一题多解。在条件和问题不变的情况下,让学生多角度、多侧面地进行分析思考,探求不同的解题途径。一题多解的`训练是培养学生发散思维的一个好方法。它可以通过纵横发散,使知识串联、综合沟通,达到举一反三、融会贯通的目的。

  三、诱导乐于求异的心理倾向

  赞可夫说过:“凡是没有发自内心求知欲和兴趣的东西,是很容易从记忆中挥发掉的”。赞可夫这句话说明了发散思维能力的形成,需要以乐于求异的心理倾向作为一种重要的内驱力。教师妥善于选择具体题例,创设问题情境,精细地诱导学生的求异意识。对于学生在思维过程中时不时地出现的求异因素要及时予以肯定和热情表扬,使学生真切体验到自己求异成果的价值。对于学生欲寻异解而不能时,教师则要细心点拨,潜心诱导,帮助他们获得成功,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时,就会能动地作出“还有另解吗?”“试试看,再从另一个角度分析一下!”的求异思考。

  四、诱导变通

  变通,是发散思维的显著标志。要对问题实行变通,只有在摆脱习惯性思考方式的束缚,不受固定模式的制约以后才能实现。因此,在学生较好地掌握了一般方法后,要注意诱导学生离开原有思维轨道,从多方面思考问题,进行思维变通。当学生思维闭塞时,教师要善于调度原型帮助学生接通与有关旧知识和解题经验的联系,作出转换、假设、化归、逆反等变通,产生多种解决问题的设想。

如何培养学生的数学思维4

  创新教育是基础教育面临的重要任务,培养创新型人才必须从基础做起。在大力提倡推进素质教育的今天,作为一个教育工作者就必须把培养学生创新思维视为己任,在教学过程中,结合教材,着力于培养学生的创新思维能力。因此,发挥数学学科的思维功能,显得尤为重要。如何培养和训练学生的创新思维能力呢?我认为可从以下几个方面入手:

  一、创设问题情境,激发创新兴趣

  俄国心理学家鲁宾斯坦说:“思维通常是由问题的情境产生的,并且以解决问题的情境为目的。”兴趣是最好的老师,是调动学生积极性的一种“能源”,是激发学生学习的先决条件和首要问题。只有学生在学习中产生一种迫切探求新知的欲望,他们的创新能力才能得以发挥,而学生学习的主动性和创造性与教师自身思维的灵活性和丰富性密切相关。因此教师自身的思维也应具有创造性,并以创新者的身份进入设置的课堂情境,为学生提供敢想、善思的创新学习的良好情境。在数学教学中,创设问题情境对激发学生的学习兴趣是很有帮助的,教师在课前准备一些适合本课教学的情境,能把学生从书本一下子拉进实际生活中,并适当提出一些问题让他解决,学生的兴趣一下子就被调动起来了。学生自己动起来,学习的氛围有了,知识也就很容易接受。教师要善于将所要解决的课题寓于学生实际掌握的知识基础之中,形成心理上的悬念,把问题作为教学过程的出发点,以问题情境激发学生的积极性,让学生在迫切要求下学习。

  1.从学生感兴趣的问题出发,创设问题情境。

  例如,在探究几何体表面的最短路径问题时,可设置下列问题:一只蚂蚁在圆筒外壁的A点,想吃到圆筒内壁的B点处残留的蜂蜜,怎样走路程最短?由此激发学生的求知欲望。

  2.从学生的生活实际出发,创设问题情境。

  例如,在学习“平方根”一节时,教师提出以下问题:小明到装饰城购买瓷砖,老板给了他一块面积为4dm2的'正方形瓷砖,聪明的你能告诉小明这块瓷砖的边长吗?若面积为5dm2,则边长应为多少呢?由此,就引出了平方根的概念。

  选择有意义的现实问题创设情境,更能培养学生良好的思维品质和应用意识。可见,问题是思维的灵魂,创设良好的问题情境是激发思维的有效方法。教师要善于把握学生的思维特点,在教学的重点、难点或关键处设计问题,创设问题情境,以激发学生的求知欲望,并启发学生的思维,提高学生自主解决问题的能力。

  二、诱导学生探索,培养创新思维

  解决问题的关键是教育内容的革新,教育观念的更新和教学方法的创新,“数学教学是数学活动的教学,是师生之间、学生之间交往互助与共同发展的过程。”弗赖登塔尔曾经说:“学一个活动最好的方法是做。”在教学中,教师既是知识的讲述人,更是学生学习的引路人。教师要引导学生主动发现、主动研究、主动探索;要注重开拓学生视野,鼓励学生从不同的方面,不同的角度探索解决问题的途径;要鼓励学生多提问题,阐述个人的独到见解,学会分析问题和解决问题,有意识地培养学生的创造性思维能力。

  教师在教学中,把教给学生知识的过程,变成引导学生自己探究、寻方法的过程,对培养学生的创造性思维能力很有帮助。

  三、一题多解,培养学生的发散思维

  发散思维是从一点或一个问题出发,知识进行放射性联想,向四面八方探索。一题多解既加深学生对知识的全面掌握,也是培养学生发散思维能力的有效途径。让学生比较哪种方法简练,并对学生想出第三种证法给予高度评价,使学生拥有成功的喜悦,享受到数学思路的创新美,借此调动学生深钻多思的学习积极性,在某种意义上达到该节课的情感目标。另外,有意通过一题多变、一题多答等具有发散性的题型进行训练、培养学生思维的创新性。在实际教学中,让学生结合实际问题自编题目,也有助于创新性思维的培养。对于学生思维能力,特别是创新性思维能力的培养,是一个很复杂而系统的领域,还需要我们在教学中不断探索、总结,再探索、再研究才能取得很好的效果。

  四、运用点拨教学,培养独创思维

  创新思维独创能力指思考问题时敢于标新立异,独辟蹊径,深挖出与众不同的能力。在数学教学中,我经常注意运用激发性语言给学生及时的点拨,鼓励他们大胆地提出自己的见解。我还想方设法给学生提供机会,让他们进行创造性的练习,努力培养学生的思维独创性。学生思维具不具有独创能力,这是相对而言的,但不管怎么说,具有思维独创能力的学生毕竟只占少数,教师应予以特别重视,因为独创性思维是创新思维发展的最高表现形式,也是创新素质培养的重点目标。

  五、打破思维定势,培养逆向思维

  所谓逆向思维(又称反向思维),是善于从反面的立场、角度去进行思考,当某一思路出现障碍时,能够迅速地运转移到另一思路上去,从而使问题得到解决的思维过程。判断一个学生思维能力强不强,依据之一就是考查学生逆向思维能力灵活不灵活。我在教学每一节内容时,除了向学生进行一定程度的正向思维训练外,还不失时机地设计逆向性的问题,教会学生从一个问题的相反思路上去思考,探求解决问题的方法途径,使学生的正向思维、逆向思维发展相互促进。例如:已知方程至多有一个负根,求实数k的取值范围。大多数学生在解答时采用分类讨论的方法,即对方程有一负一正,两个正根,没有实根,进行讨论,非常难,又非常复杂。教学中应引导学生逆向思维,“至多有一个负根”,反而非常简单,有两个负根,只需求出使方程有两个负根的k的取值范围,然后排除这种情况,问题就解决了。

  总之,时代呼唤教育,教育必须培养学生的创新精神。新的课程标准明确提出,以全面提高学生的科学素养为宗旨,以培养学生的创新精神为重点,以促进学生学习方式为突破口。因此,只有教师在教学中真正树立创新意识,学生的创造意向才能得以培养,其创造个性才能得以弘扬,才能更好地适应教育发展的需要,为国家培养更多的开拓创新的优秀人才。

如何培养学生的数学思维5

  [摘要]创新能力,是指人在顺利完成以原有知识、经验为基础的创建新事物的活动过程中表现出来的潜在的心理品质。而创新能力的作用就是教人如何进行创新实践,如何解决遇到的各种现实问题。

  [关键词]创新思维,创新意识,个性品质,数学思维能力,创新人才

  创新思维的培养不仅是学数学的需要,更是时代的要求。作者根据自己多年的教学实践,就在教学中如何培养学生的创新思维作出了阐释。

  一、深化理性思维,改善思维品质,培养创新意识

  兴趣是培养学生创新意识的前提,是构成创新动机最现实、最活泼的心理成份,是创新的动力源泉。教学中应充分利用教材,恰当的引导,适时的启发,激发不同层次学生的学习动力、兴趣,调整学生学习心理的转变,有意识的培养学生有效的思维意识和思维习惯。

  1.培养学生观察问题,发现问题,解决问题的思维习惯,激发创新意识

  人们发现新问题的能力是与大脑的积极思维分不开的,培养学生发现问题的能力是培养创新意识的前提。数学知识的获得,主要是通过对实物和模型的观察和思考,抽象概括出它们的本质属性,并用自己的语言给出定义或命题;让学生发现数学问题的解决过程,体验思维的形成过程。

  例如,将边长为3的正方体的六个面涂上颜色,而后分割成大小均匀的边长为1的正方体,则所得小正方体中只有一个面有颜色的概率是(B)。

  A.827B.29C.127D.49

  分析:“将边长为3的.正方体的六个面涂上颜色,而后分割成大小均匀的边长为1的正方体”在生活中的实物模型—魔方:

  所得小正方体中,①三个面有颜色的是位于原正方体八个顶点的八个小正方体;

  ②二个面有颜色的是位于原正方体十二条棱中间的十二个小正方体;

  ③一个面有颜色的是位于原正方体六个面正中间的六个小正方体;

  ④没有面有颜色的是位于原正方体正中心的一个小正方体。

  【评述】培养学生发现问题的能力,着重是培养学生数学地提出问题的能力,以及分析问题,解决问题的能力及过程。上述解决问题的过程是:数学问题情景—实物(或模型)—特征分析—归类整理—数学计算—结论。不但起到了巩固固有的思维结构与形式,而且收到了发散结论的思维效果。

  2.培养学生的质疑能力,促进创新意识的萌动

  创新思维是从发现问题开始的,“学起于思,思源于疑”。疑,是点燃学生思维的火种,有疑问才会去探索。如果对某些地方大胆质疑,便可促其深思,以求悟解。在数学教学中,要鼓励学生质疑,问难,敢于思考、猜测,敢于超越常规;鼓励学生善于生疑,反思。学生质疑越多,求知欲越旺,兴趣会越浓,这样学生的创新意识、创新思维、创新精神就会在质疑、解疑中得到培养和提高。

  例如,异面直线间的距离的求法—线面间的距离,这一转化一旦直接提出学生是很难接受的,在其思维活动中必然产生疑虑,促使其利用现有知识去佐证:异面直线的公垂线的找法,从而整理如下材料。

  ①a,b为异面直线,过直线b上一点B有且只有一条直线c与a平行;-a∥c;

  ②过两条相交直线b,c有且只有一个平面α-a∥α;

  ③过直线a上一点A有且只有一条直线d与平面α垂直于C;-d⊥α即-AC⊥α;

  ④直线a∩直线d=A,过b,c有且只有一个平面β,使得β⊥α于直线e;-β⊥α;

  ⑤a∥α,a∩β,α∩β=e,则a∥e,又由a∥c知e∥c;

  ⑥在平面α中,e∥c,b∩c=B则b∩e=D;

  ⑦在平面β中,a∥e,过D有且只有一条直线f与d平行且f⊥a于E即DE∥AC且DE=AC;

  ⑧DE⊥a与E,DE⊥b与D则DE即为直线a,b的公垂线段亦即异面直线a,b间的距离。

  结论:异面直线a,b间的距离即为直线a到平面α的距离AC。

  【评述】在疑问中探索,不仅能加强思维的形成过程,而且能拓展思维的广度,深度,促进创新意识的原始萌动。

  3.加强学生个性品质的养成,增强创新意识

  个性品质是指学生具有一定的数学视野及数学意识,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义。在课堂上要培养学生创造性的心理素质,就必须尊重学生个性,努力创造一个让学生积极主动参与的教学活动,并敢于发表自己见解的民主氛围,让不同层次的学生获得不同程度的成功。在教学中要充分发挥学生的自主性和创造性,善于适时利用课堂中的每次“意外”,引导学生,鼓励学生即兴创造,超越预设的教学目标。

  二、培养学生的数学思维能力,提高探究能力,发展学生的创新意识和实践能力

  数学教学中注重培养学生数学地提出问题,分析问题和解决问题的能力,发展学生的创新意识和实践能力,提高学生数学探究能力,数学建模能力和数学交流能力。努力培养学生的数学思维能力。

  1.“纵横联系”形成类比,培养学生思维的连续性,拓展性,发展学生的创新意识

  类比,是一种思维跳跃,借助于类比,可以发现新领域里的新结论。教学中有意识地对相关知识模块进行比较,找出其异同点,以此获得更新,更高的理解,所以说类比是培养学生创新思维的一种重要方法。

  例如,同一平面中线线位置关系→空间平面与平面;平面向量→空间向量。

  2.“往前多走一步”,通过归纳,培养学生思维的全面性,深刻性,培养学生创新思维

  归纳是由特殊到一般的认知过程;是通过对特例或事物的一部分进行观察与综合,进而发现和提出一般性结论或规律的过程;归纳能使我们迅速地发现事物的特征、属性和规律,是我们作出科学猜想的基础和依据,是发现数学问题的重要手段之一。因此,借助归纳是培养学生发现能力和创新思维的一条基本途径。

  例如,求数列的通项的8种模式。

  3.“多反思”,通过变式培养学生的发散思维,形成探索意识

  教学中要求学生思考问题时要注重多思路,多方法,换角度;解决问题时要注重多路径,多方式。对同一个问题,从不同的方向、不同的角度、不同的层次横向拓展,纵向深入,去探索、转化、变换、迁移、分析,激发学生潜能,提高学生素质。

  例如,全集I={1,2,3,4,5},{1,3}?A?I,则符合条件的集合A有()个。

  变式1{1,3}?A?I,则符合条件的集合A有()个。

  变式2{1,3}?A?I,则符合条件的集合A有()个。

  变式3{1,3}?A?I,则符合条件的集合A有()个。

  【评述】变式训练不仅能增强例题的使用价值,强化了固有思维模式极其形成过程,而且培养了学生的发散思维,挖掘了学生的创新潜力,形成探究意识。

  综上所述,我们应以培养学生创新思维为核心目标,充分给予学生自主学习的机会,鼓励学生敢于探索,勇于创新,科学运用数学思想、观点和方法解决问题,为一代创新人才的培养打下坚实的基础。

如何培养学生的数学思维6

  逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,是值得重视和认真研究的问题。

  逻辑思维能力是数学能力的核心,依据《大纲》和《考试说明》的精神,近年来的高考十分重视对学生逻辑思维能力的考察。本文结合高三数学复习,谈以下几点认识和教学建议。

  一、千头万绪抓根本,发展逻辑思维能力是培养学生数学能力的核心,训练只能加强,不能削弱

  高中教学的逻辑思维能力,说到底是一个正确、严谨、合理地进行思考和解决问题的能力,它要求学生在对具体问题的观察、分析、类比、归纳、演绎、综合、抽象和概括时,周密严谨,有理有据;也要求在采用演绎、归纳和类比等推理方式进行推理和论证的表达中,格式、步骤要规范,要准确而有条理,符合逻辑。

  逻辑思维能力实际上是运算能力和空间想像能力的基础。《大纲》在提到培养学生的逻辑思维能力中,指出“注意培养良好的思维品质”。这也就进一步说明了,培养学生逻辑思维能力和提高思维品质是相互关联、密不可分的!

  基于以上几点,复习课中,科学地设计和强化对学生逻辑思维能力的训练,于素质、于能力、于思维品质,都是必需的务实之举;抓住了这一点,无疑就抓住了核心、抓住了根本。

  二、关于如何科学地培养和训练学生逻辑思维能力的具体做法和教学建议

  1.充分注意向学生展现探究问题的全部失败或成 功的思维过程,培养学生周密、严谨、灵活思考问题的良好习惯。

  着眼于方程的“二次”结构特征,学生的惯常思路是解出cosx=-1或cosx=■,而后据给定区间及解的`惟一处理之,无疑,这个思考过程是正确的,符合逻辑的,但若仅局限于此,未免有些单薄,事实上,作为经验丰富的教师,会注意向学生揭示和展现以下几种思考这个问题时的出发点和过程。

  Δ=0-1≤■≤1或 Δ>0f<0f=0或δ>0f=0■<0

  解之,亦可得a≤-3或a>1.

  由上述可见,f的图象与横轴在[-l,1]上仅一个交点时,列式求值是繁难的,能否求简?注意到交点情况在这里无外乎:在[-1,1]上有一个,在[-1,1]上有零个或有两个。显见f=0,故“惟一交点”的对立面即为“有两个交点”。而在[-1,1]上有两个交点等价于:Δ>0f≥0f≥0→-31。

  显然,这样的揭示和展现,既处处体现了逻辑思维的深刻性、严谨性,又体现了数形结合思想方法、函数思想方法,也培养了等价转化、遇繁思简的思维意识;对问题的彻底解决大有裨益。

  2.密切关注学生思维失误的表现,通过旗帜鲜明、有的放矢地训练和点拨,使学生在“吃一堑、长一智”中不断提高。

  例2.设{an}为等比数列,a1=8,公比q=■,则a6与a8的等比中项是

  A.■; B.±■; C.■ ; D.±■

  当观察到a6=85,a8=87后,学生常会误选;他们认定a6与a8的等比中项必为a7,要让学生知道,这犯了“顾此失彼”的逻辑思维错误,根源在于缺乏思维的严谨性,而要使思维严谨,出发点和依据就不能出错,教材中定义a、b、c三数成等比时,b2=ac,即b=±■,这是理论根据;在无其他限制条件时,不能更改。思维的片面性和简单化是发生此类错误的根源。

  例3.若y=log2在上是减函数,求实数a的取值范围。

  许多学生会这样思考;真数u=x2-ax-a在上是减函数且大于0,于是有:

  这个逻辑推理犯了“盲目加强条件”的错误,要让学生结合教材中充要条件的论述,明白这个问题的实质不在于要求“真数u恒大于0”,而在于求y在上有意义且递减时的充分条件,即:■≥1-■f≥0

  由此得出:2≤a≤2。

  3.锤炼数学语言,培养逻辑推理能力

  数学语言是正确进行推演论证的重要工具,过不了纯熟的语言关,就无法规范、流畅、准确地表达思维成果,因此,做好这方面的工作,是培养学生逻辑思维能力的重要一环。

  最后值得强调的是,高中的后两年,恰是学生逻辑思维能力飞速提高的阶段,因此,训练的措施与程度是否得力与深刻,确实关系着学生数学素质的奠基。

  总之,在高中数学教学中,要发展学生思维能力,就要引导学生去分析、比较、综合、抽象、概括、判断、推理,然后对学生思维的过程给予肯定或纠正。有经验的教师总是注意让学生用语言表达自己的计算过程和解题思路,结果学生思维能力有较快的提高。教师还应有意识有计划地注意帮助差生,鼓励差生发言,推动他们积极思维,以便促使他们的数学成绩和思维能力都取得较大的进步。

如何培养学生的数学思维7

  培养和训练学生数学思维能力的重要途径是勤学好问的学习习惯。这一习惯的培养应孕育在整个数学教学的全过程中,与数学学习思维方法,思想能力的培养有机的结合在一起,应注意从以下三个方面入手。

  1、 挖掘教材内在的智力因素,创设问题情境。学生本来就具有较强的好奇心理,在教学中要充分利用这一心理来激发学生的学习兴趣。必须注意创设问题情境,激发学生“思和问”的求知欲。这也是培养学生勤思好问习惯的起点。

  如:在讲简易方程时,我说:同学们,我们先做一个游戏。现在,你们每个人心里想出一个数,然后加上3乘4得出的积减去5,再减去你原来相好的哪个数。好了,现在游戏开始。同学们纷纷举手。一个学生说我的最后结果是25。我就告诉他你原来想的数是6,对吗?对。学生高兴地回答“老师您是怎么知道的快告诉我们吧?”同学们兴趣盎然,纷纷的向老师提出要求。这时我说好啊,这就是老师今天要给你们讲的简易方程。学好了这一章,你们就会象老师一样猜谜了。

  2、榜样示范,激发思考。根据小学生好模仿的特点,在教学过程中,教师要及时地发现一些学生可以效仿的事例,多用一些激励性的词语触动孩子的心灵。如:“因为你肯思考,所以你的发言很精彩”、“你的想法真是与众不同”、“你的发言思维含量很高”、“你对××同学的评价很到位”、“你很善于倾听”、“我们以×××的名字来命名这种解法好吗?”、“你的作业是同学们学习的榜样”,“你提出的问题很有研究价值”等等。这样,就能让学生在榜样的影响下,养成勤于思考的良好习惯。

  3、鼓励学生主动质疑。学生学习过程中必然会产生各种不同的疑点或难点,而这些疑点和难点往往就是我们教学中的关键。学生大多存在胆怯心理,不少儿童往往有了疑难问题不愿提,不敢提,更多的`孩子由于思维能力的局限对疑难问题并未意识到。因此,在教学过程中,要十分注意教学信息的反馈,注意发现和把握学生中出现的疑点和难点。并及时鼓励学生主动质疑问题,组织引导学生讨论解决这些疑难问题对主动质疑问题的学生要给予充分的肯定。对独立解决疑难问题的学生更要大力表扬,调动他们质疑问题的积极性,引发他们解决疑难问题的创造性,这也是在培养学生严谨的求学态度的开端。

如何培养学生的数学思维8

  具备概括能力和思维能力,是良好思维品质的具体表现。培养学生的概括能力和思维能力,对数学教学具有重要的意义。那么,在数学课堂教学中应当如何有效地培养学生的数学概括能力和思维能力呢?以下谈谈我的看法。

  一、数学概括能力的培养

  数学教学中,应当强调数学的“过程”与“结果”的平衡,要让学生经历数学结论的获得过程,而不是只注意数学活动的结果。这里,“经历数学结论的获得过程”的含义是什么呢?我们认为,其实质是要让学生有机会通过自己的概括活动,去探究和发现数学的规律。

  概括是思维的基础。学习和研究数学,能否获得正确的抽象结论,完全取决于概括的过程和概括的水平。数学的概括是一个从具体向抽象、初级向高级发展的过程,概括是有层次的、逐步深入的。随着概括水平的提高,学生的思维从具体形象思维向抽象逻辑思维发展。数学教学中,教师应根据学生思维发展水平和概念的发展过程,及时向学生提出高一级的概括任务,以逐步发展学生的概括能力。

  在数学概念、原理的教学中,教师应创设教学情境,为学生提供具有典型性的、数量适当的具体材料,并要给学生的概括活动提供适当的台阶,做好恰当的铺垫,以引导学生猜想、发现并归纳出抽象结论。这里,教师铺设的台阶是否适当,主要看它是否能让学生处于一种“似懂非懂”、“似会非会”、“半生不熟”的状态。猜想实际上是在新旧知识相互作用的过程中,学生对新知识的尝试性掌握。教师设计教学情境时,首先,应当在分析新旧知识间的本质联系与区别的基础上,紧密围绕揭示知识间本质联系这个目的,安排猜想过程,促使学生发现内在规律;其次,应当分析学生已有数学认知结构与新知识之间的关系,并确定同化(顺应)模式,从而确定猜想的主要内容;再次,要尽量设计多种启发路线,在关键步骤上放手让学生猜想,使学生的思维真正经历概括过程。

  概括的过程具有螺旋上升、逐步抽象的特点。在学生通过概括获得初步结论后,教师应当引导学生把概括的结论具体化。这是一个应用新获得的知识去解决问题的过程,是对新知识进行正面强化的过程。在这个过程中,学生的认知结构与新结论之间的适应与不适应之间的矛盾最容易暴露,也最容易引起学生形成适应的刺激。

  在概括过程中,要重视变式训练的作用,通过变式,使学生达到对新知识认识的全面性;还要重视反思、系统化的作用,通过反思,引导学生回顾数学结论概括的整个思维过程,检查得失,从而加深对数学原理、通性通法的认识;通过系统化,使新知识与已有认知结构中的相关知识建立横向联系,并概括出带有普遍性的规律,从而推动同化、顺应的深入。

  数学的表现方式是形式化的逻辑体系,数学理论的最后确立依赖于根据假定进行抽象概括的能力。因此,教师应当引导学生学会形式抽象,实际上这是一个高层次的概括过程,在这个过程中,学生的逻辑推理能力可以得到很好的培养。

  二、学生的思维品质培养

  心理学家认为,培养学生的数学思维品质是发展数学能力的突破口。思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维的不同方面的特征,因此在教学过程中应该有不同的培养手段。

  数学的性质决定了数学教学既要以学生思维的深刻性为基础,又要培养学生的思维深刻性。数学思维的'深刻性品质的差异集中体现了学生数学能力的差异,教学中培养学生数学思维的深刻性,实际上就是培养学生的数学能力。数学教学中应当教育学生学会透过现象看本质,学会全面地思考问题,养成追根究底的习惯。对于那些容易混淆的概念,如正数与非负数、空集F和集合{0}、锐角和第一象限的角、充分条件和必要条件等等,可以引导学生通过辨别对比,认清概念之间的联系与区别,在同化概念的同时,使新旧概念分化,从而深刻理解数学概念。通过变式教学揭示并使学生理解数学概念、方法的本质与核心。在解题教学中,引导学生认真审题,发现隐蔽关系,优化解题过程,寻找最佳解法等等。

  数学思维的敏捷性,主要反映了正确前提下的速度问题。因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。另外,运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。因此,数学教学中,应当时刻向学生提出速度方面的要求,另外还要使学生掌握速算的要领。例如,每次上课时都可以选择一些数学习题,让学生计时演算;结合教学内容教给学生一定的速算要领和方法;常用的数字,如20以内自然数的平方数、10以内自然数的立方数、特殊角的三角函数值、无理数、、π、е、lg2、lg3的近似值都要做到“一口清”;常用的数学公式如平方和、平方差、立方和、立方差、一元二次方程的有关公式、对数和指数的有关公式、三角函数的有关公式、各种面积、体积公式、基本不等式、排列数和组合数公式、二项式定理、复数的有关公式、斜率公式、直线、二次曲线的标准方程等等,都要做到应用自如。实际上,速算要领的掌握和熟记一些数据、公式等,在思维活动中是一个概括的过程,同时也训练了学生的数学技能,而数学技能的泛化就成为能力。

  数学思维功能僵化现象在学生中是大量存在的,这与学生平时所受的思维训练有很大关系。教师在教学过程中过分强调程式化和模式化;例题教学中给学生归纳了各种类型,并要求学生按部就班地解题,不许越雷池一步;要求学生解答大量重复性练习题,减少了学生自己思考和探索的机会,导致学生只会模仿、套用模式解题。灌输式的教学使学生的思维缺乏应变能力。因此,为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。教学实践表明,变式教学对于培养学生思维的灵活性有很大作用,在概念教学中,使学生用等值语言叙述概念,数学公式教学中,要求学生掌握公式的各种变形,都有利于培养思维的灵活性。另外,思维的灵活性与思维的敏捷性是相互依存的,因此数学教学中采取措施(如编制口答练习题)加快学生的思维节奏,对于培养学生的思维灵活性也是很有好处的。

如何培养学生的数学思维9

  发散思维是一种不依常规、寻求变异、从多方面寻求答案的思维方式。这种思维方式,不受现代知识的局限,不受传统知识的束缚,与创造力有着直接联系,是创造性思维的核心。培养发散思维能力是培养创造力的重要环节。

  在数学教学中,我采取以下几种方式培养学生的发散思维。

  一、发散性提问

  思维是从问题开始的。发散性提问可以直接激励学生进行积极的思维活动。这种提问追求的目标不是单一的答案,而是尽可能多、尽可能新的独创的想法,因而对于培养学生的创造性思维,具有更直接、更现实的意义。

  如:用语言叙述算式26×(123÷3)。可以这样提问:"你能用几种不同的方式叙述这个算式?"这时,全班同学纷纷举手要求发言。"26乘123除以3的商,积是多少?"、"26与123除以3的商的积是多少?"、"26乘3除123的商,积是多少?"、"123除以3的商乘26的积是多少?"……同学们想出了许多种不同的叙述方式,显示出思维非常活跃。

  二、一题多解

  一题多解之所以有助于发散思维的培养,主要是因为它要求学生的思维活动要"多向",不局限于单一角度,不受一种思路的束缚,为了寻求问题的解决,它要求寻找多样化的解决方式,谋求多种可能。在这种情况下,学生往往会独辟蹊径,发现解决问题的新途径。

  如:"有货物72吨,先用3辆同样的汽车一次运走18吨。照这样计算,剩下的货物一次运完,需要这样的汽车多少辆?"学生们先用学过的知识,想出了(72-18)÷(18÷3)和72÷(18÷3)-3两种解法。这时我引导学生从倍数关系方面想出不同的解法。同学们在我的启发下,又想出了3×[(72-18)÷18]、3×(72÷18-1)和3×(72÷18)-3等3种解法。这时全班学生都欢呼雀跃起来,对想出不同解法的同学表示祝贺。一题多解不仅培养了学生的发散思维能力,也极大地激发了学生学习数学的积极性和浓厚的兴趣。

  三、延迟评价

  延迟评价可以给学生创设一种畅所欲言、互相启发的氛围,使学生在有限的时间内提出尽可能多的创造性设想,因而有助于培养学生的发散思维能力。例如有这样一道题:"1台榨油机每小时可以榨油150千克,5台同样的`榨油机12小时一共可以榨油多少千克?"同学们先想出了两种解法:150×5×12和150×12×5。这时又有同学想出第三种解法:150×(5×12),而有的同学立即反对说:"5×12没有意义。"这个学生的意见对不对?教师没有立即表态,而是让这位同学说出自己的思路:"先求出按每台榨油机各工作1小时计算共需多少台榨油机,再求出共榨油多少千克。"同学们听后都感到有道理。于是又有一位同学受启发想出了另一种解法:150×(12×5)。这样大家一共讨论出4种解法。学生寻求答案,特别是新颖独特的答案,要有个思维的过程。这个过程,像机器启动一样,是慢慢展开的。在学生思维启动的过程中,别人的、特别是教师的过早评价,往往会成为思维展开的抑制因素。正因为如此,我们在课堂上应当表现出极大的耐心,给学生充分的时间,让他们驰骋联想、各抒己见。在这种情况下,学生们会有一种"安全感"、"自由感",从而无拘束、无顾虑地针对问题展开积极的思维活动和语言活动,起到相互启发的作用。

如何培养学生的数学思维10

  一创设民主和谐的课堂教学气氛

  创造思维与创新能力的形成和发展,必须有民主、平等的教学氛围。在课堂教学中,学习氛围的一个重要方面是师生关系。“亲其师,信其道”,师生情感融洽,使学生敢想、敢问、敢说,从而诱发创新思维。

  首先在学习中互助合作,对关键性的问题展开讨论,人人都有发言的机会,讲错了也不要紧,对学生的专业进行小评、互评、鼓励学生大胆发言,积极争议。如教学“路程问题”时,学生在计算路程和时间上出现如下几种算法:(1)45×5+55×5;(2)(45+55)×5;(3)55×10-(55-45)×5;(4)45×10+(55-45)×5。我先让学生说出这样算的理由,然后评议哪种方法比较好,课堂气氛热烈,学生交流了多种思路,收到了内在反馈信息,促使“创新”思想的幼芽在学生的心灵中萌发。

  二引导学生积极主动参与学习

  教学过程需要教师积极创设条件,引导学生积极主动地参与学习,而不是被动地接受教师所灌输的知识,努力促使学生主动地获取知识,学会发现问题、提出问题并能解决问题。如教学“圆的认识”时,我这样引导学生实践思考,充分发挥主体作用:

  (1)让学生看书自学,再用圆规任意画一个圆,并汇报实践操作的体会。有的学生初学画圆没有成功,教师让他们说出原因,圆规针尖滑动画不好,需要固定圆心,圆规两脚叉开的大小画圆时发生变化,所以画的不圆,叉的大小要固定不变。

  (2)让学生在一张纸上不同的位置分别画出两个大小不同的圆,再问:这两个圆为什么位置不同,大小也不同呢?引导学生发现问题。得出:定点决定圆的位置,定长决定圆的大小。

  (3)用尺子在一个圆内让学生分别画出圆的半径和直径,提问:你能画出多少条?在画圆的半径与直径过程中,使学生发现圆的半径和直径各有无数条,从而得到圆作为轴对称图形,它的对称轴有无数条。学生通过以上实践操作,不仅发现了问题,而且创造性地解决了问题。

  三指导学生善于质疑问难

  古人云:“学起于思,思源于疑。”科学的发明创造往往是从质疑开始的,从解疑入手,因此,课堂教学要依据教材内容特点,在新旧知识的连接点上,设计问题情境,如教学“分数化小数”时,我一改以往老师提问、学生回答的形式,组织了一个别开生面的竞赛活动——师生竞赛,由学生报出几个分母不是10、100、1000的分数,看谁能最快说出哪些分数能化成无限小数,等学生才计算出一两道题时,我已判断完毕,学生在“失败”“惊讶”之余产生了疑问:为什么老师如此神速?这里面定有奥妙。学生带着渴求的心理去思考,去探索其中的规律,初步得出结论后,我又围绕其中“最简分数”这一学生容易忽视的前提条件,再次创造问题情境,让学生们判断几个非最简分数能否化成有限小数。结果,学生照前面的结论判断出现了失误,这又促使他们去思考失误的.原因,从而完善这一规律性的认识。

  四鼓励学生标新立异,诱发灵感

  灵感是一种直觉思维,它大体是指由于长期实践不断累积了经验和知识而突然产生的富有创造性的思路,它是认识上质的飞跃,灵感的发生往往伴随着突破和创新。

  在教学中,教师应及时捕捉和诱发学生学习出现的灵感,对学生别出心裁的想法、违反常规的解答、标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定,并用交换角度、类比形式等方法诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。例如,在学习比较有理数的大小时有这样一道题:把3/7、6/11、4/9、12/25用“>”号排列起来。对于这道题,学生通常都是采用分数化小数或先通分再比较的方法,但由于公分母太大,解答比较麻烦。为此,我在教学中,启发他们倒过来看看,再想想还可以怎样比大小。倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数比较大小的简捷方法。

  总之,人贵在创造,创造思维是创造力的核心,培养有创新意识的创造人才是中华民族振兴的需要,因此我们应该共同从课堂教学做起。

如何培养学生的数学思维11

  新课程改革提倡课堂应具有开放性、不确定性,强调师生互动,即通过教与学的相互作用的过程,以达到提高学生的整体素质,发展学生创造潜能的终极目的。在现代教学中如何为学生创设主动参与学习的条件和环境,唤起学生的主体意识,培养学生设疑、质疑、提高学生自己的素质。

  一、激发学生的学习自觉意识,培养主动参与学习的习惯

  学生是学习的主体对象,处于“互动式”教学过程的中心地位。教师要围绕着学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。学生学习目的明确,方能把学习转化自觉的行为。要使学生成为有独立行为的、有自觉、有意识的人,才能在学习中具有自主性和主动性。学生自觉主动参与学习的程度将直接影响和制约整个教学过程的发展和教学的结果。从终极目标看,知识经济时代需要智力型人才,学生现在不通过学习来发展个性和提高各种能力,将来会为此付出巨大代价。从学科目标看,要使学生认识到学习数学不是单纯地为了应付升学考试,数学学科具有独特的学科优势,它能使人头脑灵活、思维活跃、逻辑清晰。学好数学,发展自身整体素质,终身受益无穷。

  首先应养成预习的习惯,预习并不是新鲜事物,它是课堂上主动学习的前奏曲,预习要写出预习提要、预习问题,通过感知教材,初步认识学习内容,才能延伸到深化理解的层面;其次要使学生成为学习的主人,积极投入,善于参与到教学中来;再次要学会与他人交流,质疑问难、互问互议、各执己见,教学相长,相得益彰。

  二、以学生发展为本,重视学生的自主探索,强化学生的“探究性活动”

  新课程明确提出,数学教学应培养学生“不断追求新知,独立思考,会从数学的角度发现和提出问题”。因此在数学课堂教学中,教师不再是指令学生按预设的套路学习,而是应以引导学生发现问题、提出问题、提出猜想,并尝试解决,通过自主探索和研究,创造性地获取知识和掌握知识。只有这样,学生学到的知识更难忘。数学题一般分为标准题、变式题、探究题和开放题四大类型。而解决标准题的方法是系统列出一套让学生掌握牢固的思维方法,这就为解决变式题、探究题和开放题奠定了基础,而解决复杂的'变式题和开放题,最关键是把未知转化为已知,把变量转化常量,激发学生去主动探索、求实、求真。

  同时,课堂上要对学生因材施教,强调学生的具体情况不同,设计教学、组织教学,以实现促进每一个学生得到发展的可能。教师必须用尊重、平等的情感去感染每一位学生,使课堂充满“爱”的气氛。只有在轻松愉快的情绪氛围下,学生才能对所学的知识产生浓厚的兴趣。“兴趣是一种特殊的意识倾向,是动机产生的重要的主观原因。兴趣作为一种自觉的动机,是对所从事活动的创造性态度的重要条件。”数学教学中教师要善于激发学生的学习兴趣,让每个学生积极参与到“探究、尝试”的过程中来,从而发挥他们的想象力,激发出他们创新的潜能。

  三、重视数学思维方法的渗透和灌输,注意培养学生思维的想象力

  1.注意培养学生的观察力。

  在课堂中,怎样培养学生的观察力呢?首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。

  2.注意培养想象力。

  想象是思维探索的翅膀。在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。另外,还应指导学生掌握一些想象的方法,像类比、归纳等。

  3.注意培养发散思维。

  在教学中,要通过一题多解、一题多变、一题多思等培养学生的发散思维能力。

  4.注意诱发学生的灵感。

  在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当应用数形结合、变换角度、类比等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。

  5.重视解题教学,发展创新思维。

  通过解题教学,要让学生在掌握基础知识、基本方法、基本技能的前提下,学会从多个角度提出新颖独特的解决问题的方法,培养他们解决问题的实践能力,发展他们的创新思维,使他们具有敏锐的观察力、创造性的想象力、独特的知识结构以及活跃的灵感等思维素质。在解题中引导学生打破常规、独立思考、大胆猜想、质疑问难、积极争辩、寻求变异、放开思路、充分想象、巧用直观、探究多种解决方案或途径,快速、简捷、准确地解决数学问题。

  综上所述,随着新一轮课程改革不断深入,以培养学生思维能力为主题,逐步培养学生的创新能力,更是整个素质教学的需要,在课堂教学中我们唯有全方位的体现“以人为本”的精神,注重过程教学,培养学生的思维能力,促进学生能力发展,我们才无愧于改革的口号,无愧于参与课程改革的学生。

如何培养学生的数学思维12

  一、注意培养学生的比较能力

  六年级数学中有许多联系密切,但容易混淆的概念。如何使学生找出它们之间的区别和联系,从而形成正确的概念呢?我通常的做法是,利用教材,借助比较的方法提高学生的辨析能力。

  例如:在进行分数乘除法应用题教学时,为了使学生对分数乘除法应用题的结构,解法与解题思路的异同有清楚的.了解,我抓住两点进行教学,一是比较的标准--弄清两数相比时,以哪个为标准;二是比较的结果--弄清不同的比较形式所得出的比较结果的含意。同样,在教学中借助线段图分析应用题的数量关系时,要求学生先画作为标准的线段,再画表示与这个标准相比的线段。

  有这样一道题:

  (1)两捆电线:一捆长120米,比另一捆短三分之一,另一捆电线长多少米?

  (2)有两捆电线,一捆长120米,另一捆比它短1/3,另一捆长多少米?

  在教学时,我先引导学生比较这两小题的不同点,再比较相同点。

  通过比较,学生明白,第(1)题是第一捆长度与另一捆比,另一捆长度作标准,第(2)题是另一捆长度与第一捆长比。第一捆长度作标准,虽然比值相同,但由于比较的标准不同,比较所得的结果的含义也就不同。因此这两小题的数量关系式不同,解题方法也就不同。在列出分数乘除法算式后,我再次引导学生对这两个算式进行比较,加深了学生对三个数量之间的关系的理解。进一步弄清了分数乘除法应用题之间的联系和区别。

  二、注意培养学生的分析、综合的能力。

  分析与综合是思维的基本过程,也是重要的逻辑思维方法。根据六年级学生的特点,在进行应用题教学时,我通常做法是引导学生从借助线段图进行分析,综合到根据所给的条件和问题进行分析、综合,重视概念教学,计算教学和几何初步知识教学中培养学生的分析、综合能力。

  例如,在学习长方体、正方体后,我出示这样一道题:“一个棱长8厘米的正方体木块,?表面全部涂上红颜色,然后把它分成棱长是2厘米的小正方体若干块,其中三面有红颜色,二面有红颜色,一面有红颜色,没有红颜色的各有多少块?”初看这道题,似乎不大好下手,我没有急于让学生求成。而是先让学生说出正方体的特征,?然后让学生探讨把大正方体分成棱长2厘米的小正方体若干块怎样分割?在取得一致结论后,接着让他们思考:分成的小正方体共有多少块?

如何培养学生的数学思维13

  《义务教育课程标准》明确要求:教师要重视学生在获取和运用知识的过程中,发展思维能力,数学教学不仅要教给学生数学知识,而且还要揭示获取知识的思维过程,后者对发展能力更为重要。在教学中,我们应当注意数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解题思路的过程,解题方法和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的能力。

  下面结合自己的数学教学实践,谈谈调动学生学习积极性,培养学生思维能力的一些做法。

  一、精心创设情境,调动学习热情

  热爱是产生学习动力的源泉。有了热爱, 学生才能对数学有着浓厚的兴趣,在执着地学习中追求和探索。在数学课堂中,精心设置情境,恰当运用具体的人和事, 能激发学生主动参与的积极性。

  例如:给初一学生上第一节数学课时,我叫大家拿一张作业本纸竖直剪成10条, 接着问:在以每条的式样设计成作业本能用吗?如果我们的书也设计成这种式样好吗?学生都说不好,然后引导到数学中的比例问题。

  再如:教师把自己的嘴扭向一边,问好看么?学生答:不好看,我问:为什么?学生答:左右不对称。于是说 我让学生联想生活中还有哪些物件跟人脸一样是对称的,学生很快想到桌凳、黑板、汽车、飞机、轮船、动车等等,教师进一步鼓动说:也许你们今后能设计制造出比这些物件更精美、更高档的物件,只要学好数学基础知识一定能!

  学生明白了这些,对数学的理解更深入了,也产生了浓厚的兴趣。

  二、巧妙设置问题,激发思维积极性

  实践证明,问题是数学的灵魂,数学从问题开始也得解决问题。教学中平铺直叙地讲解,一般是不会引起学生学习兴趣的。如果我们能够根据教学内容,设置悬念,引起学生认知上的矛盾与冲突,便能激发起学生要求解疑的心理需求,培养思维积极性。

  如教学《勾股定理》,可设置问题:由两个正方形组成的图形,能否剪拼为一个面积不变的新的正方形,若能,看谁剪的次数最少。 教师在此设置问题不仅是检验勾股定理的灵活运用,更是对勾股定理探究方法和证明思想(数形结合思想、面积割补的方法、转化和化归思想)的综合运用,从而让学生在探究中解决问题、发展创新能力。同时,注重展现思维过程。

  数学教学过程是学生在教师的指导下通过自己积极的思维活动学习数学知识的思维过程。因此,忽视思维过程的活动,只讲结论,不讲过程,不让学生自己动脑, 就会造成学生思维懒惰,使思维形成定势或僵化。展示思维过程, 能揭示知识的发生、发展变化,使学生迅速抓住思考问题的本质,使思维向纵深发展。

  以《多边形内角和定理》问题的创设为例。

  首先教师问:三角形和四边形的内角和分别为多少?四边形内角和是怎样探求的?

  (转化为三角形)那么,五边形内角和你会探求吗?六边形、七边形 n 边形内角和又是多少呢?这样鼓励学生思考,指导他们发现方法,渗透类比,归纳、猜想。

  接着教师又提出:从四边形内角和的探求方法,你得到什么启发呢?五边形如何化归为三角形,三角形数目是多少?六边形 n 边形呢?你能否用列表的方法给出多边形内角和与边数,化归为三角形的个数是多少?从中你能发现什么规律,想一想怎样求 n 边形内角和?可得出什么结论?

  进而让学生揭示思维过程,探索论证方法,让学生参与探索定理的结论及证明过程,大大激发学生的.求知兴趣,思维能力也得到逐步发展。

  三、抓住内容精华, 培养思维深刻性

  课本中的概念与习题是教科书的重要组成部分,是数学问题的精华,是数学知识的浓缩。深化课本概念和习题教学,是巩固学生双基,培养学生能力,发展学生智力,提高学生数学素质的一条重要渠道;引导学生钻研概念与习题,并加以恰当的分析研究、归纳是提高学生思维能力的有效方法。

  如教学《因式分解》。在数学教材中,因式分解是学生在学习了整式乘法后,自然地引人的,如 m(a +b +c) = ma + mb+ mc 是乘法运算,反过来得到:ma+mb+mc= m(a+b+c)则是因式分解。这里明确指出了因式分解与整式乘法的关系。于是教材结论出如果把乘法公式反过来,就可以用来把某些多项式分解因式。

  接着得出:把 (a +b)(a-b)= a2-b2 反过来就得到a2-b2 = (a + b)(a - h),即因式分解的平方差公式。由此,抓住类比思维,抓住因式分解与整式乘法的互逆性这条主线,既能使学生真正理解因式分解的含义,又可以从思维的角度训练其逆向思维的能力。

  同时,注意在教学中一开始就强调让学生运用因式分解与整式乘法的互逆关系来进行验算。教学中,在处理因式分解中的分组分解法时,要强调用分组分解法时,一定要想想分组后能否继续进行,完成因式分解,由此合理选择分组的方法。

  这样逐步深入,有利于提高学生整体观察能力,培养他们思维的深刻性。

  四、采用一题多解, 鼓励钻研与探索

  数学教学其实是教学思维活动的教学,数学思维中最可贵,层次最高的品质是创造思维。创造力是后天培养和造就的。开展创造性思维训练,绝不是针对高智力学生,也不限于中等以上的学生,而是要面向绝大多数学生,让他们都有机会进行思维创造力训练,提高数学素质。

  当然,培养创造性思维能力是多方面的,如观察力、想象力、发散思维能力、动态思维能力、灵感等。现以在解题中通过进行对比、联想,采取一题多解与一题多变的方法进行训练,培养学生思维的探索性、灵活性、创造性。一题多解多变训练,就是启发和引导学生从不同的角度、不同的思路,用不同的方法和不同的运算过程去分析、解答同一道数学题的练习活动。

  如分解因式:x3 + 3x2- 4,这个题的解法就有好几种。事实上, 每个题中都会隐含一些内在规律。我们可以通过不同的途径达到解题的同一目的。

  因此,探求一题多解多变, 对提高分析问题和解决问题的能力是很有益处的。在教学中,我们要经常进行这种训练,培养学生思维的创造性。

  五、教学活用多媒体,强化能力培养

  多媒体课件在初中课堂教学实践中的运用,给我们的教学工作增添了新的方式、丰富了教学的形式;大大提高了课堂教学的效率,虽然不是无所不能的良药,只要适时、适量、恰当运用,就会起到动一子而全盘皆活的良效,减轻教师负担,减轻学生负担,促进课堂教学更科学,更优化,更好培养学生数学能力。

  如学习《轴对称图形》,在创设情境、导入新知,动手操作、探究新知,巩固练习、运用新知的过程,随机展示生活中各种轴对称图形,让学生全方位认知。在此基础上组织学生与老师合作探究、与同伴合作交流,充分地理解轴对称图形的特点,提高识别生活中轴对称图形的能力,进而培养学生数学素养。

  总之, 教学中,我们要以数学思想方法为指导,注重创设问题情境, 把握内容精华, 采取一题多解多变, 适当运用多媒体, 就能增强学生学习兴趣, 启迪和培养学生思维, 开发学生创造力, 提高学生综合素养。

如何培养学生的数学思维14

  在数学教学中怎样培养学生的创新思维摘要:在数学教学中培养学生的创新思维,对于提高学生的一般数学能力和全面提高数学教学质量,有着深远的意义。同时,也是当前国内小学数学研究中一个有待于深入研究的课题。

  关键词:培养 创新 思维

  怎样培养学生的创造性思维呢?广大教师根据学生年龄进行了以下分析,由于小学生的年龄小,一般是7-12 岁,数学思维的特点仍以具体形象思维为主,并逐步向抽象思维过渡它们的逻辑思维,在很大程度上仍然是与感性经验相联系的,具有很大成分的具体形象性。为此,我们根据多次的见习观察和指导老师的引导,从以下几方面进行了深入的探究:

  1.动手操作,引发学生的创新思维。

  著名心理学家皮亚杰说:儿童的思维是从动手开始的,切断动作与思维的联系,思维就不能得到发展。因此,在教学中要让学生人人参与,亲自动手,真正成为学习的主人,让他们充分感知,把抽象的数学知识变为看得见、摸得着、理解得了的数学事实。

  如要在24平方厘米的白纸上设计12平方厘米的面积,你如何设计?学生通过动手操作实践。就设计出如上方案:

  看着孩子们的种种方案,不由得又想起教育家陶行知先生说过的话:学生在活动中寻找知识解释困难,先生不过站在旁边加以指点而已。

  2.激趣学生兴趣,培养学生创新能力。

  浓厚的兴趣是创造性思维的促进剂。学生常会在愉快、欢乐的氛围中,迸发出创造性思维的火花。

  例如在讲解小数点位置移动引起数的大小变化的内容,不少学生总是掌握不好。因此,老师在课堂上就组织学生做一个很有兴趣的游戏。游戏的做法是这样:预先剪好同样大小的硬纸板若干块,分别写上0、1、2、3、4、5、6、7、8、9等数字。0 的纸板应适当多写几块,另加一块画有小数点的纸板。游戏开始时,按需要每人拿一块纸板,举到头上排成横行,组成一个小数或整数,然后按口令将数扩大或缩小,于是拿一个小数点的和拿0 的学生就移动到适当位置,让全体学生读出新组成的数并判断是否正确。游戏是分组进行的,看哪个组出现错误少。学生兴趣昂然,思维活跃,对小数点的位置与小数大小的关系有了新的认识。

  3.在学生的提问中,培养学生的创新能力。

  人民教育家陶行知曾说过:发明千千万,起点一个问。爱因斯坦也说过:不会提问,就意味着不会创造,因为任何创造总是从提问开始的.。可见,培养学生问题意识,敢以提问,善于提问,乐于提问,对促进学生智能发展和素质的提高具有重要作用。因此,在课堂教学中,采取学生对老师提问;学生对学生提问;学生对教材提问的方式,有意识的激发学生问,激励学生想问、敢问、会问、爱问、创新问,在问中解决问题,在问中培养创新能力。

  如在人教板第八册32页的第4题:学校买了足球、排球各5个,一个足球55元,一个排球42元,买足球比排球多用多少元?学生很快用两种解法列出算式:

  555-425= (55-42)5=

  在此基础上,老师用红粉笔把足球、排球各5个标出,并提问学生,你们发现了什么?于是就有部分同学回答:我发现足球与排球的个数一样。另一同学随即发问:老师,当足球和排球个数不相同时,能用第二种解法吗?我被深深地震撼了,老师于是利用合作学习的优势组织学生进行讨论,(改为足球6个,排球5个),得出了其它解法:

  556-425= (55-42)5+55= 6+42=

  每一节课老师都注意留些时间让学生相互提问,让学生正当小老师考考对方,采用分组对抗、争夺智慧星、正当数学小博士、聪明小一休等活动。使学生积极开动脑筋,积极思考,培养了学生的创新能力。如在教学长方形和正方形的周长时在小结过程中让学生相互提问题,不少学生积极发问:长方形、正方形的周长计算公式是怎样推导出来的?长方形的周长计算公式为什么是长加宽的和再乘2?二正方形的周长计算公式为什么是边长乘边长学生所提的问题被其他学生一一答出。有的学生进一步提问:能不能利用长方形的周长公式推导平行四边形的周长公式?能不能利用正方形的周长公式推导出五边形、六边形的周长计算公式?这些问题的提出,可以让学生分组讨论,也可以让学生课后去讨论,这样,课内与课外有机结合,也就加深了学生对知识的理解和掌握。

  4.多做开拓、变通练习,培养学生的创新能力。

  数学知识在不同层次上,不同范围内可以各成系统,但它们之间往往又彼此联系,组成各自的系统。一题多变可以使学生弄清知识的来龙去脉,使学生能创造性的提出问题并解决问题,从而提高他们的创新能力。

  例如:学校食堂运来1吨煤计划烧40天。由于改进了炉灶,每天节省5千克,这批煤可以烧多少天?学生做完题后,可启发学生将由于改进炉灶,每天节省煤5 千克这个条件改成间接叙述的形式,让学生说出叙述形式进行解答。

  5.发展学生非逻辑思维,培养学生的创新能力。

  例如在教学《角的初步认识》后设计了这样一道题:把一张正方形的纸减去一个角后,还剩几个角?不少学生立即回答:三个角。教师不置可否地回答:真的吗?请同学们亲自动手剪一剪,探究新的结论。这样,教师在课堂教学设计时把知识结论变成一个探究过程让学生亲身经历知识的形成过程,培养了学生的科学探究精神,提高了解决问题的能力和创新能力。

  6、通过显性知识和隐性知识的结合,培养学生的创新能力。

  在数学教学过程中教师通过对二者的结合,适当设疑,是课堂出现愉快的交往场景,提高学生的创新能力。例如,我在指导学生利用创造性思考方面讲解了这样一道数学题:菜园里黄瓜得丰收,摘下全部的 3/8 ,装了3筐还多24千克,摘下其剩余部分时,有刚好装满6筐。一共摘黄瓜多少千克?由于这是道较复杂的分数应用题,学生都积极投入到讨论之中,通过一段时间的讨论,有的学生说:其剩余部分是总千克数的13/8 =5/8,装了6筐。6筐是3筐的2倍,那么先摘的3筐应占总千克数的5/82=5/16 。 实际先摘了3/8 ,总千克的3/8 比总千克数的 5/16 正好多24千克,则总重量是:

  24(3/8 +5/16)

  =241/16

  =384(千克)

  还有的学生说:其剩余部分是总千克数的5/8,装了6筐,每筐装的占总千克数的 5/8 6=5/48 。3筐装的占总千克数的(13/8 )63=5/16 。24千克占总重量的 3/8 5/16 =1/16 。则总重量是:

  24〔 3/8 (13/8 )63〕

  =24〔 3/8 5/16 〕

  =241/16

  =384(千克)

  还有的学生用其他解法进了解答,这样激发了学生的好奇心、好胜心,有利于激发兴趣,有利于扩大学深的思维空间,有利于培养学生的创新精神和解决问题能力。

  总之,在21世纪的今天,学生知识的获得已不能仅靠在学校中教师的传授,学习知识需要靠学生自己的不断努力、探索、发现。因此教师的任务是培养学生获取知识的能力,培养学生的创造意识和创新能力。要培养学生的创新能力,首先必须清醒我们头脑的残留封建意识,改变专制的教学方法,营造民主的课堂学习气氛,保护学生的自尊心,保护学生的个性,培养学生健康的心态,让学生敢说、敢问、敢做。只有这样,我们中华民族才能在不久的将来恢复那种创造发明的非凡能力。

如何培养学生的数学思维15

  在网络信息的年代,培养创新能力人才的今天。我国的教育教学模式亦发生翻天覆地的变化。我们区在新教材改革中,率先采用北师大的新教材、新模式进行教育教学活动,体现了“自主、合作、交流、探索”八个字,在此本人谈谈教学活动中的“交流”环节。

  “交流”是一种人与人沟通的方式,也是信息传递、知识传递的一种形式。在教学中用这种方法,使师生、同学之间的关系接近,思维得到更好的发展,更活跃去思考问题,在交流中,大家可以互相补充对方的缺点、漏洞,使学生有种顿悟感,亦快速地纠正个人的错误思维。

  一、在“交流”中让学生看到教师的思维过程。

  在日常生活中,教学活动中,“交流”是常见到的一种活动,教师经常碰到学生请教题目的情况,而遇到一些难题时,教师一时解决不了(尤其是一些难题),就不当堂解题,许多老师会把题目带回去,完成再给学生一个完美的答案。但是,其实这位老师失去了一个训练学生的良好的机会,因为学生没有看到教师是如何起步的。曾遇到过哪些困难,又是如何解决的。这样对学生的能力毫无长进,碰到难题仍无法独立解答,他们自己仍然得不到提高。

  现代的教师应转变思想,让学生知道老师也不是神,也是一个普通的人,解题中也会碰到许多困难,培养学生对学习数学的信心和兴趣,还应让学生知道应该用什么策略去解决问题与困难。因此,教师应利用每一次“交流”机会带领学生一起去认识问题,变更问题,选择策略,变更策略,引入辅助问题,综合运用策略……边演示边分析给学生听,让学生看到自己解题的思维过程。

  经过长期的训练之后,学生就能在学习开始时分析学习问题的特点,并有针对性地选择适用的策略。在学生学习过程中根据学习情况的变化,进行及时有效的自我观察,自我临近和自我调节,在学习结束时,则能客观地评价自己学习活动的有效性及学习方法的适用性,评定自己对学习内容的掌握程度和策略运用水平和问题所在,并制定调整措施与计划。

  二.在“交流”中让教师看到学生的思维过程

  当学生“交流”着解决问题时,应让学生开声地想,这就是新教材、新教法中的'“交流”,这样学生已具有什么技能,缺乏什么技能,这些技能的缺乏又是如何影响学生的学习和知识的迁移的——教师可以从他们开声的想法中得到所要的足够信息;从而可以有的放矢地设计数学问题和练习,向学生清晰地示范如何解决问题,并通过学生的练习和教师的及时反馈,使学生掌握所缺乏的技能,逐步完善认知的技能。

  三、在“交流”中培养学生的独立性和连动性

  思维的独立性主要表现在:能独立思考问题;善于发现和解决前人尚未发现和解决的问题;能自觉研讨获得新知识。教学中我们可以采用现代教学法,如“发现法”和“导学探究教学法“等,教给学生自学的方法和发现、探究的方法,使之在认识和探究的实践中逐步培养自己的自觉能力和独立思考能力,这就是“授之以渔”。但是我们不能以此为满足,还要做一些具体的诱惑工作:可以先出示一些典型例题,再交给学生一些感性材料,在学生熟悉这些材料的基础上适当地提示使规律性的东西时隐时现,非本质的东西则可有可无。这样便于学生在独立思考时生成疑团,产生独立探究的欲望,继之寻求解决问题的规律和方法,这样在“交流”的基础上又体现了学生的自主性。

  通过加强“双基”训练,已使学生掌握了一部分基础知识,教师在学生学会独立思考的基础上,及时引导学生将所学知识自觉串线归类、加强记忆。这时教师再出示一些综合性练习题,启发学生可纵向,可横向,亦可逆向地联想,从知识结构的不同方向去寻觅解决问题的最优方案,以培养学生思维的连动性。

  四、在“交流”中开拓思路,诱发求异性思维和发散性思维

  徐利治教授曾指出:“详细说来,任何一位科学家的创造能力,可用如下公式来估计:创造能力=知识量×发散思维能力。”从这里可以看到培养学生发散思维能力的重要性。为了培养学生的求异性和发散思维能力,教师可以向学生出示一些具体有多种解法的题目,要求学生用多种方法求解,以此引导学生广开思路。

  五、在“交流”中激励猜想,追求高效性思维

  要培养学生的高效性思维,就必须讲究思维的效率和速度,不能如常规思维那样按部就班地“迈方步”,必须使学生的思维保持一个较大的“跨度”,使学生有一种敢于超越的精神。为此教师在“交流”中采取了如下做法:适当安排有一定难度的练习题,在提供恰当的材料后,就“推波助澜”,使学生的思维活动保持“生动”和“奔放”,有意识地培养学生的直觉思维,鼓励猜想,启迪学生的“灵感”,促使其“顿悟”,使思维活动不断地产生“飞跃”。

  心理学家研究发现,9~22岁的学生正是处于创造性思维的培养期,初中生正好处于这一年龄段。为了不失时机地培养学生的创造性思维能力,教师必须改革传统的、封闭的教学模式,代之以新的教学法;自觉地运用新教材、新模式,不断开发学生的智力;还要使每一位学生懂得,数学的发展并不是简单地承袭过去,而是在新的实践基础上,批判地改造前人既得的成果而把数学推向前进。不断启发、诱导、教育学生乐于探索、勇于探索、善于探索,充分利用新教材中的“交流”促使学生以实际行动去攀登数学科学的高峰。

【如何培养学生的数学思维】相关文章:

如何培养学生的数学思维12-23

如何培养学生的数学思维经典【15篇】12-23

如何培养学生思维能力12-08

如何培养学生思维能力[实用]12-09

如何培养学生思维能力经典【15篇】12-09

如何培养学生思维能力【优选15篇】12-08

如何培养学生思维能力(集合15篇)12-09

(精华)如何培养学生思维能力15篇12-09

如何培养学生能力04-11