如何培养学生的数学思维

时间:2025-12-23 18:54:00 好文 我要投稿

如何培养学生的数学思维经典【15篇】

如何培养学生的数学思维1

  一、问题提出

如何培养学生的数学思维经典【15篇】

  中学数学教学,一方面要传授数学知识,使学生具备数学基础知识的素养;另一方面,要通过数学知识的传授,培养学生能力,发展智力,这是数学教学中一个非常重要的方面,应引起高度重视,在诸多能力中,我们认为思维能力是核心。

  我们知道,人类的活动离不开思维,钱学森教授曾指出:“教育工作的最终机智在于人脑的思维过程。”思维活动的研究,是教学研究的基础,数学教学与思维的关系十分密切,数学教学就是指数学思维活动的教学,数学教学实质上就是学生在教师指导下,通过数学思维活动,学习数学家思维活动的成果,并发展数学思维,使学生的数学思维结构向数学家的思维结构转化的过程。对数学思维的研究,是数学教学研究的核心,数学思维的发展规律,对数学教学的实践活动具有根本性的指导意义,因此,在数学教学中如何发展学生的数学思维,培养学生的数学思维能力是一个广泛而值得探讨的课题。

  二、数学思维能力概述

  1.数学思维能力

  我们知道,能力是顺利完成某种活动所必需的并直接影响活动效率的个性心理特征。数学能力是人们在从事数学活动时所必需的各种能力的综合,而其中数学思维能力是数学能力的核心。

  2.数学思维能力因素

  苏联著名心理学家克鲁捷茨基长期致力于中小学生数学能力的研究,在专著《中小学生数学能力心理学》一书中曾研究提出了数学能力包括一系列从最一般到非常特殊的因素:

  (l)最一般的能力,包括勤奋、坚韧的意志,品质和工作能力等个性心理特征。

  (2)数学能力的一般因素,即广泛范围活动所必需的思维特征,如思维的条理性,灵活性等。

  (3)数学能力的特殊因素,基本成分有:

  ①把数学材料形式化,把形式从内容中分离出来,从具体的数值关系和空间形式中抽象出它们,以及用形式的结构(即关系和联系的结构)来进行运算的能力;

  ②概括数学材料,使自己摆脱无关的内容而找出最重要的东西,以及在外表不同的对象中发现共同点的能力;

  ③用数字或其他符号来进行运算的能力;

  ④进行“连贯而适当分段的逻辑推理”的能力;

  ⑤缩短推理过程,用简短的结构来进行思维的能力;

  ⑥逆转心理过程(从顺向的思维系列转到逆向的思维系列的能力);

  ⑦思维的灵活性,即从一种心理运算转到另一种心理运算的能力;

  ⑧数学记忆力,这是一种对于概括,形式化结构和逻辑模式的记忆力;

  ⑨形成空间概念的能力。

  3.数学思维能力要素

  高度的抽象性是数学最本质的特点,数学的抽象性导致了极大的概括性,抽象和概括构成了数学的实质,数学的思维是抽象概括的思维。因此,抽象概括能力构成了数学思维能力的第一要素,除此之外,还有推理能力,判断选择能力和探索能力。

  三、数学教学中培养学生的数学思维能力

  (一)抽象概括能力

  数学抽象概括能力是数学思维能力,也是数学能力的核心。它具体表现为对概括的独特的`热情,发现在普遍现象中存在着差异的能力,在各类现象间建立联系的能力,分离出问题的核心和实质的能力,由特殊到一般的能力,从非本质的细节中使自己摆脱出来的能力,把本质的与非本质的东西区分开来的能力,善于把具体问题抽象为数学模型的能力等方面。

  在数学抽象概括能力方面,不同数学能力的学生有不同的差异。具有数学能力的学生在收集数学材料所提供的信息时,明显表现出使数学材料形式化,能迅速地完成抽象概括的任务,同时具有概括的欲望,乐意地、积极主动地进行概括工作。

  数学教学中如何培养学生的抽象概括能力呢?我们认为从以下几方面入手:

  1.教学中将数学材料中反映的数与形的关系从具体的材料中抽象出来,概括为特定的一般关系和结构,做好抽象概括的示范工作,要特别注意重视"分析"和"综合"的教学。

  2.在解题教学中要注意去发掘隐藏在各种特殊细节后面的普遍性,找出其内在本质,善于抓住主要的、基本的和一般的东西,即教会学生善于运用直觉抽象和上升型概括的方法。

  3.培养学生概括的习惯,激发学生概括的欲望,形成遇到一类新的题时,经常把这种类型的问题一般化,找出其本质,善于总结。

  4.培养学生的抽象概括能力是长期艰苦的工作,在教学中要随时注意培养,有意识地根据不同情况严格训练和要求,逐步深入,提高要求。

  (二)推理能力

  数学运算、证明以及数学发现活动都离不开推理,数学的知识体系实质上就是用逻辑推理的方法构成的命题系统,因此,推理与数学关系密切,教学中应注重推理能力的培养。

  逻辑推理在数学中是普遍存在的,应予以重视,除逻辑推理能力而外,更要注意直觉推理能力的培养,因为直觉推理使数学思维具有灵活性、敏捷性和创造性,使人们去猜想。

  教学中如何培养学生的推理能力呢?我们认为重要的是要注意推理过程的教学,一开始就要逐步养成推理过程"步步有根据",严密的推理,在熟练的基础上又要逐步训练学生简缩推理过程。

  要充分利用学科特点,如几何学科,适宜地逐步地培养学生的推理能力。

  (三)选择判断能力

  选择、判断能力是数学创造能力的重要组成部分。选择、判断不仅表现为对数学推理的基础过程及结论正误的判定,还表现为对数学命题、事实、数学解题思路、方法合理性的估计以及在这个估计的基础上作出的选择,判断能力实际上是思维者对思维过程的自我反馈能力。

  具有选择判断能力的学生,在判断选择中较少受表面非本质的因素的干扰,判断的准确率较高,判断迅速,对作出的判断具有清晰的认识,能区分逻辑判断和直觉猜测,他们具有明显的追求最合理的解法,探究最清晰,最简单同时也是最"优美"的解法的心理倾向。

  教学中如何培养学生的选择判断能力呢?我们认为应从以下几方面人手:

  1.我们知道,直觉判断、选择往往要经历获取信息,信息评价(判断),策略选择几个环节,因此,教学中应首先注意信息的获取,这是培养选择、判断能力的关键。

  2.教学中应逐步使学生建立起恰当的价值观念,因它是选择判断的根据。

  3.在解题教学中应训练学生具有选择探求最佳解法的欲望,不仅提倡一题多解,而且还要判断几种解法谁最佳?好在何处?

  (四)数学探索能力

  数学探索能力是在抽象概括能力、推理能力、选择判断能力基础上发展起来的制造性思维能力,探索的过程实质上是一个不断提出设想,验证设想,修正和发展设想的过程,在数学中,它表现在提出数学问题,探求数学结论,探索解题途径,寻找解题规律等一系列有意义的发现活动之中,而数学探索能力就集中地表现为提出设想和进行转换的本领。

  数学探索能力是数学思维能力中最富有创造性的要素,也是最难培养和发展的要素。探索能力强的学生,能迅速地轻易地从一种心理运算转到另一种心理运算,表现出较强的灵活性,在对思维活动的定向、调节和控制上,有较强的监控能力,对思维过程有较强的自我意识,善于提出问题,敢于大胆猜想。

  教学中如何培养学生的探索能力呢?我们认为应重点从以下几方面人手:

  1.激发学生的学习兴趣,使学生始终处于探索未知世界的主动地位。

  2.在具体的教学中要善于引导学生推敲关键性的词句。

  3.使学生学会“引伸”所学的知识。

  4.从具体的探索方法上给学生以指导,在探索过程中要广泛应用各种思维方法,如分析、综合、一般化、特殊化、归纳、类比、联想、演绎等,要重点给学生介绍逻辑的探索方法──综合法和分析法。

  5.鼓励学生勇于探索,善于探索,发扬创新精神,提出独立见解,形成探索意识。

  四、结束语

  数学教学与思维密切相关,数学能力具有和一般能力不同的特性,因此,发展数学思维能力是数学教学的重要任务,我们在发展学生数学思维能力的努力中,不仅要考虑到能力的一般要求,而且还要深入研究数学科学、数学活动和数学思维的特点,寻求数学活动的规律,培养学生的数学思维能力。

如何培养学生的数学思维2

  在数学教学中怎样培养学生的创新思维摘要:在数学教学中培养学生的创新思维,对于提高学生的一般数学能力和全面提高数学教学质量,有着深远的意义。同时,也是当前国内小学数学研究中一个有待于深入研究的课题。

  关键词:培养 创新 思维

  怎样培养学生的创造性思维呢?广大教师根据学生年龄进行了以下分析,由于小学生的年龄小,一般是7-12 岁,数学思维的特点仍以具体形象思维为主,并逐步向抽象思维过渡它们的逻辑思维,在很大程度上仍然是与感性经验相联系的,具有很大成分的具体形象性。为此,我们根据多次的见习观察和指导老师的引导,从以下几方面进行了深入的探究:

  1.动手操作,引发学生的创新思维。

  著名心理学家皮亚杰说:儿童的思维是从动手开始的,切断动作与思维的联系,思维就不能得到发展。因此,在教学中要让学生人人参与,亲自动手,真正成为学习的主人,让他们充分感知,把抽象的数学知识变为看得见、摸得着、理解得了的数学事实。

  如要在24平方厘米的白纸上设计12平方厘米的面积,你如何设计?学生通过动手操作实践。就设计出如上方案:

  看着孩子们的种种方案,不由得又想起教育家陶行知先生说过的话:学生在活动中寻找知识解释困难,先生不过站在旁边加以指点而已。

  2.激趣学生兴趣,培养学生创新能力。

  浓厚的兴趣是创造性思维的促进剂。学生常会在愉快、欢乐的氛围中,迸发出创造性思维的火花。

  例如在讲解小数点位置移动引起数的大小变化的内容,不少学生总是掌握不好。因此,老师在课堂上就组织学生做一个很有兴趣的游戏。游戏的做法是这样:预先剪好同样大小的硬纸板若干块,分别写上0、1、2、3、4、5、6、7、8、9等数字。0 的纸板应适当多写几块,另加一块画有小数点的纸板。游戏开始时,按需要每人拿一块纸板,举到头上排成横行,组成一个小数或整数,然后按口令将数扩大或缩小,于是拿一个小数点的和拿0 的学生就移动到适当位置,让全体学生读出新组成的数并判断是否正确。游戏是分组进行的,看哪个组出现错误少。学生兴趣昂然,思维活跃,对小数点的位置与小数大小的关系有了新的认识。

  3.在学生的提问中,培养学生的创新能力。

  人民教育家陶行知曾说过:发明千千万,起点一个问。爱因斯坦也说过:不会提问,就意味着不会创造,因为任何创造总是从提问开始的。可见,培养学生问题意识,敢以提问,善于提问,乐于提问,对促进学生智能发展和素质的`提高具有重要作用。因此,在课堂教学中,采取学生对老师提问;学生对学生提问;学生对教材提问的方式,有意识的激发学生问,激励学生想问、敢问、会问、爱问、创新问,在问中解决问题,在问中培养创新能力。

  如在人教板第八册32页的第4题:学校买了足球、排球各5个,一个足球55元,一个排球42元,买足球比排球多用多少元?学生很快用两种解法列出算式:

  555-425= (55-42)5=

  在此基础上,老师用红粉笔把足球、排球各5个标出,并提问学生,你们发现了什么?于是就有部分同学回答:我发现足球与排球的个数一样。另一同学随即发问:老师,当足球和排球个数不相同时,能用第二种解法吗?我被深深地震撼了,老师于是利用合作学习的优势组织学生进行讨论,(改为足球6个,排球5个),得出了其它解法:

  556-425= (55-42)5+55= 6+42=

  每一节课老师都注意留些时间让学生相互提问,让学生正当小老师考考对方,采用分组对抗、争夺智慧星、正当数学小博士、聪明小一休等活动。使学生积极开动脑筋,积极思考,培养了学生的创新能力。如在教学长方形和正方形的周长时在小结过程中让学生相互提问题,不少学生积极发问:长方形、正方形的周长计算公式是怎样推导出来的?长方形的周长计算公式为什么是长加宽的和再乘2?二正方形的周长计算公式为什么是边长乘边长学生所提的问题被其他学生一一答出。有的学生进一步提问:能不能利用长方形的周长公式推导平行四边形的周长公式?能不能利用正方形的周长公式推导出五边形、六边形的周长计算公式?这些问题的提出,可以让学生分组讨论,也可以让学生课后去讨论,这样,课内与课外有机结合,也就加深了学生对知识的理解和掌握。

  4.多做开拓、变通练习,培养学生的创新能力。

  数学知识在不同层次上,不同范围内可以各成系统,但它们之间往往又彼此联系,组成各自的系统。一题多变可以使学生弄清知识的来龙去脉,使学生能创造性的提出问题并解决问题,从而提高他们的创新能力。

  例如:学校食堂运来1吨煤计划烧40天。由于改进了炉灶,每天节省5千克,这批煤可以烧多少天?学生做完题后,可启发学生将由于改进炉灶,每天节省煤5 千克这个条件改成间接叙述的形式,让学生说出叙述形式进行解答。

  5.发展学生非逻辑思维,培养学生的创新能力。

  例如在教学《角的初步认识》后设计了这样一道题:把一张正方形的纸减去一个角后,还剩几个角?不少学生立即回答:三个角。教师不置可否地回答:真的吗?请同学们亲自动手剪一剪,探究新的结论。这样,教师在课堂教学设计时把知识结论变成一个探究过程让学生亲身经历知识的形成过程,培养了学生的科学探究精神,提高了解决问题的能力和创新能力。

  6、通过显性知识和隐性知识的结合,培养学生的创新能力。

  在数学教学过程中教师通过对二者的结合,适当设疑,是课堂出现愉快的交往场景,提高学生的创新能力。例如,我在指导学生利用创造性思考方面讲解了这样一道数学题:菜园里黄瓜得丰收,摘下全部的 3/8 ,装了3筐还多24千克,摘下其剩余部分时,有刚好装满6筐。一共摘黄瓜多少千克?由于这是道较复杂的分数应用题,学生都积极投入到讨论之中,通过一段时间的讨论,有的学生说:其剩余部分是总千克数的13/8 =5/8,装了6筐。6筐是3筐的2倍,那么先摘的3筐应占总千克数的5/82=5/16 。 实际先摘了3/8 ,总千克的3/8 比总千克数的 5/16 正好多24千克,则总重量是:

  24(3/8 +5/16)

  =241/16

  =384(千克)

  还有的学生说:其剩余部分是总千克数的5/8,装了6筐,每筐装的占总千克数的 5/8 6=5/48 。3筐装的占总千克数的(13/8 )63=5/16 。24千克占总重量的 3/8 5/16 =1/16 。则总重量是:

  24〔 3/8 (13/8 )63〕

  =24〔 3/8 5/16 〕

  =241/16

  =384(千克)

  还有的学生用其他解法进了解答,这样激发了学生的好奇心、好胜心,有利于激发兴趣,有利于扩大学深的思维空间,有利于培养学生的创新精神和解决问题能力。

  总之,在21世纪的今天,学生知识的获得已不能仅靠在学校中教师的传授,学习知识需要靠学生自己的不断努力、探索、发现。因此教师的任务是培养学生获取知识的能力,培养学生的创造意识和创新能力。要培养学生的创新能力,首先必须清醒我们头脑的残留封建意识,改变专制的教学方法,营造民主的课堂学习气氛,保护学生的自尊心,保护学生的个性,培养学生健康的心态,让学生敢说、敢问、敢做。只有这样,我们中华民族才能在不久的将来恢复那种创造发明的非凡能力。

如何培养学生的数学思维3

  一、激发动机,培养学生思维意向品质

  动机是直接推动人进行活动的内部动因和动力,心理学家布鲁纳把“动机原则”作为一个重要教学原则, 认为教学必须激发学生的学习积极性和主动性。儿童是有个性的人,他的活动受兴趣支配,一切有成效的活动 须以某种兴趣作先决条件。兴趣可以产生学习动机,是学生学习的重要动力源之一,有了兴趣,教学才能取得 良好的效果。如教学“相遇问题”时,为了扫清学习障碍,上课开始,教师可创设这样的情境:先由两位同学 从教室的两端面对面地行走,设问:“①这两位同学行走的方向怎样?②两位同学行走的结果如何?……”这 样通过生活实际的直观演示,丰富学生的感性认识,使学生理解“相向”、“相遇”、“相距”、“同时”等 抽象概念,积极主动地参与对新知识的探求。其次是加强思维方法的指导。小学生对程式化的教学方法感到枯 澡,要注意把学生熟悉的事物同所学知识联系起来,变抽象为直观。如,通过“学号是质数、合数的学生分别 站起来”的游戏,使学生形象地领悟质数与合数的区别,又如,教学圆柱的侧面积时,让学生把纸筒沿竖向剪 开,展示出长方形,学生通过直观操作,很快推导出圆柱侧面积计算公式。三是通过变换那些用来说明概念的 直观材料或事例的形成,使其中的本质属性保持恒定,而非本质属性时有时无。作这样的变式练习,能使学生 思维活动从偏见与谬误中解脱出来,从而灵活地应用一般的原理、原则。例如题组:

  (1)一桶油漆,第一次用去1/5千克,第二次用去这桶油漆的4/5,刚好用完,这桶油漆有多少千 克?

  (2)一桶油漆,第一次用去4/5千克,第二次用去这桶油漆的1/5刚好用完。两次一共用去多少千 克?

  (3)一桶油漆,第一次用去1/5,第二次用去4/5千克,刚好用完,这桶油漆重多少千克?

  这种变换叙述形式的练习,尽管问题叙述不同,但学生通过仔细审题,很快便能理解这几道题的实质都是 求这桶漆油的重量,从而培养了积极思维的意向品质。

  二、增加含熵信息,提高思维密度

  如果信息本身一部分已被认知,还有一部分不确定性(熵)不能消除,这类信息就称为“含熵信息”。学 生学习就是接收信息——消除不确定性的过程。如果教师在课堂上处处“讲深讲透”,学生得不到“生疑—— 解疑——省悟”的一波三折,那么充斥这节课的便是“饱和信息”,便无法激起学生学习的热情,使其产生内 驱力,学生的思维就得不到发展。思维的是一个信息传递、接收和贮存、加工的过程。因此,要激发思维活动 ,必须对教学过程进行有效控制,有计划,有目的地传递含熵信息,从而提高思维密度。

  1.以内部言语培养学生的独立思考能力。数学课堂教学,要让学生能充分发挥学习的主动性,这就要求 教师对学生提出思维要求,而且要留有一定的空间,让学生独立思考。在教学中,让学生先想一想再去做。使 学生言语与行动逐步起着自觉调控作用,促进思维的“内化”,从而发展学生的独立思考能力。例如:“五( 1)班现有学生49人,男女生人数的比是4∶3,五(1)班男生、女生各有多少人?”对这样的应用题, 可先让学生独立思考,再试着做,而不是由教师直接教给解法。学生通过认真的思考,可以找出多种解法。

  解法一:4+3=7 49×4/7=28(人)……男生

  49×3/7=21(人)……女生

  解法二:4+3=7 49÷7=7(人)

  7×4=28(人)……男生

  7×3=21(人)……女生

  (附图 {图})

  (附图 {图})

  解法四:先求出女生是男生的几分之几,再求男、女生各多少人。

  3÷4=3/4 49÷(1+3/4)=49×4/7=28(人)……男生

  28×3/4=21(人)……女生

  再让学生把思考的过程和方法说出来:解法一是用按比例分配的方法;解法二是用归一法;解法三是用倍 比法;解法四是用分数解。这样的教学,学生有充分思考的机会,在“想一想”的过程中,内部言语得到了发 展,从而培养了学生独立思考的能力。

  2.以内部言语促进学生逻辑思维能力的提高。现代教育观认为,数学教学是数学活动的教学,即思维活 动的教学。语言是思维的外壳……思维通常是以语言为载体表现出来。俄罗斯心理学家加里培林关于智力形成 的学说提到,智力活动始源于物质活动,以语言为中介,内化为“人脑”的内部言语。根据学生的认知规律, 学生在操作学具时,要把动手操作,动脑思考,动口表达结合起来,也就是从“外化”到“内化”,在操作中 使“操作”与“思维”紧密结合,从而发展学生的内部言语,提高逻辑思维能力。

  例如在进行三角形面积计算公式推导的教学中,可以安排三个层次的操作,即三个层次的思维训练。第一 层,操作后问:锐角三角形、直角三角形、钝角三角形分别和拼成的平行四边形的面积有什么关系?为教学公 式中“除以2”奠定基础;第二层,让学生抽象出“任何三角形的面积都是平行四边形面积的一半”;第三层 ,进一步引导学生观察、比较认识三角形的底和高分别与平行四边形的底和高的`关系。在此基础上,要求学生 自己推导出三角形的面积计算公式,并讲出是如何推导的,公式中“底×高”是什么意思,为什么要除以2。 这样引导学生紧扣操作活动中的“想一想”进行独立思考,不仅发展了内部语言,而且使学生的抽象概括能力 和演绎推理能力得到了较好的训练和培养。

  三、训练主体思维,优化思维品质

  数学既能锻炼人的形象思维能力,又能锻炼人的逻辑思维能力。主体思维善于在事物的不同层次上向纵、 横两个方面发展,向问题的深度和广度发展,达到对事物全面的认识。为此,教师应重视在数学教学过程中, 揭示数学问题的实质,帮助学生提高思维的凝练能力。在解决问题的过程中,先对问题作整体分析,构建数学 思维模型,再由表及里,揭示问题的实质。当问题趋于解决后,由此及彼,系统地研究相关的问题,做到解决 一题就可解一类题,即触类旁通。以对应用题的训练为例,教师要善于从横向、纵向、逆向、系统等多层次、 多方向上进行演变、扩展、加深,才能提高数学课堂教学的密度和容量。也只有这样,才能达到既不增加学生 负担,又能提高教学质量之目的。

  1.纵向延伸。要引导学生深入思考,沟通前后联系,弄清知识由浅入深,逐步深化的递进层次结

  1/4,第一次修了多少千米?解答后再纵向延伸:如果改变题目的条件,怎样解答,如果改变题目中的 问题,又怎样解答。

  2.横向展开。学生解题后,还可以横向展开,引导学生从多种角度、多种途径进行解题(此种方法多适 应于练习课与复习课)。例如:“修一条1800米的路,3天修了120米,照这样计算,修完这条路共用 多少天?”可以这样引导学生:①以1天修的路程数表示效率;②以修1米所用的时间表示效率;③以修12 0米所用的时间,或以3天修的路程表示效率等方法进行解答。

  3.逆向回转,理解结论。训练学生从顺、逆两个方向思考问题,有利于提高思维的深刻性、敏捷性和灵 活性。例如:甲乙两车从A、B两地相向开出,乙车每小时行60千米,比甲车多行1/4,求甲、乙两车一 小时共行多少千米?解答之后,再把解题结果作为已知条件,引导学生逆向编题。如:甲乙两车一小时共行1 08千米,乙车每小时比甲车多行1/4,求甲、乙两车每小时各行多少千米?显然,这道题的难度要高于前 一题。

  4.一题带一类,构建小系统。例如教完简单工程问题后,可以将工程问题与工作问题及相遇的行程问题 三者联系起来,这样就能用“同一知识统一解决不同问题”的方法。构建知识的小系统。

  优化数学课堂教学,发展学生思维能力,必须做到教学目标明确、教学重点突出、教学方法合理,教学效 果才能得以保证,减轻学生过重负担也才能落到实处。

如何培养学生的数学思维4

  逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,是值得重视和认真研究的问题。

  逻辑思维能力是数学能力的核心,依据《大纲》和《考试说明》的精神,近年来的高考十分重视对学生逻辑思维能力的考察。本文结合高三数学复习,谈以下几点认识和教学建议。

  一、千头万绪抓根本,发展逻辑思维能力是培养学生数学能力的核心,训练只能加强,不能削弱

  高中教学的逻辑思维能力,说到底是一个正确、严谨、合理地进行思考和解决问题的能力,它要求学生在对具体问题的观察、分析、类比、归纳、演绎、综合、抽象和概括时,周密严谨,有理有据;也要求在采用演绎、归纳和类比等推理方式进行推理和论证的表达中,格式、步骤要规范,要准确而有条理,符合逻辑。

  逻辑思维能力实际上是运算能力和空间想像能力的基础。《大纲》在提到培养学生的逻辑思维能力中,指出“注意培养良好的思维品质”。这也就进一步说明了,培养学生逻辑思维能力和提高思维品质是相互关联、密不可分的!

  基于以上几点,复习课中,科学地设计和强化对学生逻辑思维能力的训练,于素质、于能力、于思维品质,都是必需的务实之举;抓住了这一点,无疑就抓住了核心、抓住了根本。

  二、关于如何科学地培养和训练学生逻辑思维能力的具体做法和教学建议

  1.充分注意向学生展现探究问题的全部失败或成 功的思维过程,培养学生周密、严谨、灵活思考问题的良好习惯。

  着眼于方程的“二次”结构特征,学生的惯常思路是解出cosx=-1或cosx=■,而后据给定区间及解的惟一处理之,无疑,这个思考过程是正确的,符合逻辑的,但若仅局限于此,未免有些单薄,事实上,作为经验丰富的教师,会注意向学生揭示和展现以下几种思考这个问题时的出发点和过程。

  Δ=0-1≤■≤1或 Δ>0f<0f=0或δ>0f=0■<0

  解之,亦可得a≤-3或a>1.

  由上述可见,f的图象与横轴在[-l,1]上仅一个交点时,列式求值是繁难的,能否求简?注意到交点情况在这里无外乎:在[-1,1]上有一个,在[-1,1]上有零个或有两个。显见f=0,故“惟一交点”的对立面即为“有两个交点”。而在[-1,1]上有两个交点等价于:Δ>0f≥0f≥0→-31。

  显然,这样的揭示和展现,既处处体现了逻辑思维的深刻性、严谨性,又体现了数形结合思想方法、函数思想方法,也培养了等价转化、遇繁思简的思维意识;对问题的'彻底解决大有裨益。

  2.密切关注学生思维失误的表现,通过旗帜鲜明、有的放矢地训练和点拨,使学生在“吃一堑、长一智”中不断提高。

  例2.设{an}为等比数列,a1=8,公比q=■,则a6与a8的等比中项是

  A.■; B.±■; C.■ ; D.±■

  当观察到a6=85,a8=87后,学生常会误选;他们认定a6与a8的等比中项必为a7,要让学生知道,这犯了“顾此失彼”的逻辑思维错误,根源在于缺乏思维的严谨性,而要使思维严谨,出发点和依据就不能出错,教材中定义a、b、c三数成等比时,b2=ac,即b=±■,这是理论根据;在无其他限制条件时,不能更改。思维的片面性和简单化是发生此类错误的根源。

  例3.若y=log2在上是减函数,求实数a的取值范围。

  许多学生会这样思考;真数u=x2-ax-a在上是减函数且大于0,于是有:

  这个逻辑推理犯了“盲目加强条件”的错误,要让学生结合教材中充要条件的论述,明白这个问题的实质不在于要求“真数u恒大于0”,而在于求y在上有意义且递减时的充分条件,即:■≥1-■f≥0

  由此得出:2≤a≤2。

  3.锤炼数学语言,培养逻辑推理能力

  数学语言是正确进行推演论证的重要工具,过不了纯熟的语言关,就无法规范、流畅、准确地表达思维成果,因此,做好这方面的工作,是培养学生逻辑思维能力的重要一环。

  最后值得强调的是,高中的后两年,恰是学生逻辑思维能力飞速提高的阶段,因此,训练的措施与程度是否得力与深刻,确实关系着学生数学素质的奠基。

  总之,在高中数学教学中,要发展学生思维能力,就要引导学生去分析、比较、综合、抽象、概括、判断、推理,然后对学生思维的过程给予肯定或纠正。有经验的教师总是注意让学生用语言表达自己的计算过程和解题思路,结果学生思维能力有较快的提高。教师还应有意识有计划地注意帮助差生,鼓励差生发言,推动他们积极思维,以便促使他们的数学成绩和思维能力都取得较大的进步。

如何培养学生的数学思维5

  一创设民主和谐的课堂教学气氛

  创造思维与创新能力的形成和发展,必须有民主、平等的教学氛围。在课堂教学中,学习氛围的一个重要方面是师生关系。“亲其师,信其道”,师生情感融洽,使学生敢想、敢问、敢说,从而诱发创新思维。

  首先在学习中互助合作,对关键性的问题展开讨论,人人都有发言的机会,讲错了也不要紧,对学生的专业进行小评、互评、鼓励学生大胆发言,积极争议。如教学“路程问题”时,学生在计算路程和时间上出现如下几种算法:(1)45×5+55×5;(2)(45+55)×5;(3)55×10-(55-45)×5;(4)45×10+(55-45)×5。我先让学生说出这样算的理由,然后评议哪种方法比较好,课堂气氛热烈,学生交流了多种思路,收到了内在反馈信息,促使“创新”思想的幼芽在学生的心灵中萌发。

  二引导学生积极主动参与学习

  教学过程需要教师积极创设条件,引导学生积极主动地参与学习,而不是被动地接受教师所灌输的知识,努力促使学生主动地获取知识,学会发现问题、提出问题并能解决问题。如教学“圆的认识”时,我这样引导学生实践思考,充分发挥主体作用:

  (1)让学生看书自学,再用圆规任意画一个圆,并汇报实践操作的体会。有的学生初学画圆没有成功,教师让他们说出原因,圆规针尖滑动画不好,需要固定圆心,圆规两脚叉开的大小画圆时发生变化,所以画的'不圆,叉的大小要固定不变。

  (2)让学生在一张纸上不同的位置分别画出两个大小不同的圆,再问:这两个圆为什么位置不同,大小也不同呢?引导学生发现问题。得出:定点决定圆的位置,定长决定圆的大小。

  (3)用尺子在一个圆内让学生分别画出圆的半径和直径,提问:你能画出多少条?在画圆的半径与直径过程中,使学生发现圆的半径和直径各有无数条,从而得到圆作为轴对称图形,它的对称轴有无数条。学生通过以上实践操作,不仅发现了问题,而且创造性地解决了问题。

  三指导学生善于质疑问难

  古人云:“学起于思,思源于疑。”科学的发明创造往往是从质疑开始的,从解疑入手,因此,课堂教学要依据教材内容特点,在新旧知识的连接点上,设计问题情境,如教学“分数化小数”时,我一改以往老师提问、学生回答的形式,组织了一个别开生面的竞赛活动——师生竞赛,由学生报出几个分母不是10、100、1000的分数,看谁能最快说出哪些分数能化成无限小数,等学生才计算出一两道题时,我已判断完毕,学生在“失败”“惊讶”之余产生了疑问:为什么老师如此神速?这里面定有奥妙。学生带着渴求的心理去思考,去探索其中的规律,初步得出结论后,我又围绕其中“最简分数”这一学生容易忽视的前提条件,再次创造问题情境,让学生们判断几个非最简分数能否化成有限小数。结果,学生照前面的结论判断出现了失误,这又促使他们去思考失误的原因,从而完善这一规律性的认识。

  四鼓励学生标新立异,诱发灵感

  灵感是一种直觉思维,它大体是指由于长期实践不断累积了经验和知识而突然产生的富有创造性的思路,它是认识上质的飞跃,灵感的发生往往伴随着突破和创新。

  在教学中,教师应及时捕捉和诱发学生学习出现的灵感,对学生别出心裁的想法、违反常规的解答、标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定,并用交换角度、类比形式等方法诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。例如,在学习比较有理数的大小时有这样一道题:把3/7、6/11、4/9、12/25用“>”号排列起来。对于这道题,学生通常都是采用分数化小数或先通分再比较的方法,但由于公分母太大,解答比较麻烦。为此,我在教学中,启发他们倒过来看看,再想想还可以怎样比大小。倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数比较大小的简捷方法。

  总之,人贵在创造,创造思维是创造力的核心,培养有创新意识的创造人才是中华民族振兴的需要,因此我们应该共同从课堂教学做起。

如何培养学生的数学思维6

  在实际数学教学中,人们往往对思维的深刻性、敏捷性、灵活性、创造性较为重视,对思念的批判性注意不够,这显然是不当的。因为在数学中,没有批判就没有鉴别,没有鉴别就没有数学能力,学生的数学能力,只能在批判错误肯定正确过程中才能获得提高。因此,培养学生数学思维的批判性非常重要。本文将谈谈如何在数学教学中培养学生数学思维的批判性。

  一、让学生独立思考、大胆质疑,激发其批判精神

  学生在学习过程中,经常会遇到判断是非、选择正确答案的情况有时还会遇到题目的答案不正确、不完整的情况教师利用这些机会,鼓励学生独立思考、大胆质疑,从中发现问题这对激发学生的批判精神将是大有裨益的。

  例1已知双曲线的右侧焦点F(5,0),右准线方程为X=3,离心率为,求双曲线方程。

  有学生作出了如下解答由已知C=5,所以,所以,双曲线的方程为。对于学生的上述解答,教师没有立即指出其中的错误,而是利用这一契机,激发学生开动脑筋,自己发现问题。学生经过思考很快找了解答中错误:①双曲线的中心不一定在原点;②题中高心率为“”的条件没用上;③求得的双曲线的高心率不等于。这样做的结果,不仅使错误得了纠正,更重要的是鼓励学生进行了独立思考,大胆质疑,参与了批判,激发了他们的批判精神。

  二、让学生落陷受难,吃堑长智,提高其辨误水平

  教学中经常利用“致误型”习题,给学生置难设陷,让学生通过落陷受难吃堑长智,在失败中接受教训,不断提高自己的'辨误水平。

  例2已知P(x0,y0)是圆x2+y2=r2内异于圆心的一点,试判断直线x0x+y0y=r2与圆的位置关系。

  相当一部分学生受思维定势的影响,一看到此直线方程估断直线与圆相切,有的学生一看至P(x0,y0)是圆内的点,便以为直线过圆内一点,断定直线必定与圆相交。当这些学生判断失败后,教师及时引导他们发现错误寻找错因,看清“陷阱”所在。同时提醒他们在审题中不要被“形”所迷惑,要透过“形表”看本质。事实上,圆心(0,0)到直线x0x+y0y=r2的距离d=(因点P(x0,y0)在圆内,可知)直线与圆相离。接着,我又给出了学生一个问题:已知P(x0,y0)是圆x2+y2=r2外的一点,试判断直线x0x+y0y=r2与圆的关系。问题给出以后,吃一堑长一智的学生没以前那么“激动”,他们冷静思考,带着批判意识分析,排除习惯性臆想,基本上给出了正确的判断:直线与圆相交。其实,此时直线x0x+y0y=r2是过点P(x0,y0)的圆x2+y2=r2的两切线的切点弦所在的直线。

  三、让学生辨析对比、注重鉴别,锻炼其评价能力

  在这方面,采取了如下两种做法:

  1、有意识地提出一些易混淆的概念,给出改错、判断、选择性地组题,让学生通过辨析对比,识别真伪,并让他们说出正确的根据和错误的原因,促使他们从事物错综复杂的联系中,发现问题的实质,客观的评价事物。

  例3下例命题哪几个不成立?并举例说明不成立的理由。

  (1)非负数就是正数;

  (2)无限小数都是无理数;

  (3)正数和负数统称有理数;

  (4)形如a+bi的数都是虚数。

  通过上例的解答,学生在辨析对比中弄清了正数、无理数和虚数的概念,弄清了各概念的区别和联系,辨别真伪的能力。

  2、通过对题目不同解法的分析比较,让学生批判地参与判断和评价;引导学生自己进行矫正,提高辨别是非的能力.

  四、拓宽深化,破立结合,培养学生破中有立的观念,丰富批判的内涵

  引导学生明确批判的目的,是使学生能够发现问题及时纠正错误,也就是说,破是为了立,因此,教学中还应适当的例子,把问题拓宽深化,做到破立结合,有破有立,培养学生破中有立的观念中的、不一定要求是实数,也可以是复数,还可以代表两个式子,学生提出的问题很有道理,我肯定了他这种敢于对“标准答案”指出疑问,敢于向权威挑战的精神和做法,接着教师提出若保持“标准答案-2”不变,应如何将题目完善的问题,对于这一新的问题很多学生进行饶有兴趣的讨论,他们认为要想使“标准答案-2不变,只有将____”改为“则实数____”,这样做的结果,不仅对“标准答案”的不完整性给予“破”而且对后来提出的问题给予了“立”这种边破边立,破立结合的做法,不仅使学生树立了破中有立的观念,而且难了批判的正确性,加深了学生数学思维批判性的深度和广度,丰富了批判的内涵。

如何培养学生的数学思维7

  1. 引言

  数学思维能力是小学阶段数学学习的核心,也是培养学生创新意识和解决问题能力的重要途径。本开题报告旨在探讨如何通过小学奥数课程,有效地培养小学生的数学思维能力。

  2. 研究背景

  当前,随着社会的发展和竞争的加剧,小学生数学学习的重要性日益凸显。然而,传统的数学教学往往注重知识的灌输,缺乏对学生思维能力的培养,导致学生在解决实际问题时缺乏灵活性和创新性。因此,有必要探讨如何通过小学奥数课程,培养学生的数学思维能力。

  3. 研究内容与方法

  本研究将采用文献综述和实地调查相结合的方法,通过收集相关文献资料,分析小学奥数课程对学生数学思维能力的'影响,并结合实地调查结果,提出相应的培养策略和方法。

  4. 研究目标

  本研究旨在探讨小学奥数课程对培养学生数学思维能力的作用,明确其在小学数学教育中的价值和意义,为今后的教学实践提供理论依据和实践指导。

  5. 研究内容及预期结果

  通过对小学奥数课程的研究,我们将深入分析其在培养学生数学思维能力方面的优势和特点,探讨其在小学数学教育中的应用策略和方法,并预期能够为学校和教师提供一些有效的教学指导和参考意见。

  6. 结论与展望

  本研究将有助于加深对小学奥数课程的理解和认识,明确其在培养学生数学思维能力方面的作用和意义,为今后的教学实践提供理论依据和实践指导,促进小学数学教育的持续发展和提高。

如何培养学生的数学思维8

  一、做出来不如讲出来,听得懂不如说得通。

  做10道题,不如讲一道题。 孩子做完家庭作业后,家长不妨鼓励孩子开口讲解一下数学作业中的难题,我也在群里会经常发一些比较好的训练题,您也可以鼓励去想一想说一说,如果讲得好,家长还可进行小奖励,让孩子更有成就感。

  原因:做10道数学题,不如让孩子“说”明白一道题。小学数学,重在思维的训练,思维训练活了,升到初高中,数学都不会差到哪去。家长要加强孩子“说”题的训练,让孩子把智慧说出来。孩子能开口说解题思路,是最好的思维训练模式。很多家长以为数学就是要多做题,可是有的孩子考试做错了题,但遇到同类或相似题型时,仍然一错再错。不妨让孩子把错题订正后,“说”清楚错误环节,这样孩子的思路一下子就豁然开朗了。

  要培养质疑的习惯。 在家庭教育中,家长要经常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。

  在孩子放学回家后,让孩子回顾当天所学的知识:老师如何讲解的,同学是如何回答的?当孩子回答出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。有时,可以故意制造一些错误让孩子去发现、评价、思考。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。

  二、举一反三,学会变通。

  举一反三出自孔子的《论语·述而》:“举一隅,不以三隅反,则不复也。”意思是说:我举出一个墙角,你们应该要能灵活的推想到另外三个墙角,如果不能的话,我也不会再教你们了。后来,大家就把孔子说的这段话变成了“举一反三”这句成语,意思是说,学一件东西,可以灵活的思考,运用到其他相类似的.东西上!

  之前也常常听到家长反映,接到一些学生来信,说平时学习勤奋,请家教、上补习班,花了很多精力夯实基础知识,可考试时还是感觉反应慢、思路窄,只能就题论题,做不到举一反三,对于一些灵活性强的题目往往就束手无策。

  在数学的训练中,一定要给孩子举一反三训练。一道题看似理解了,但他的思维可能比较直线,不多做几道举一反三或在此基础上变式的题,他还是转不过玩了。

  举一反三其实就是“师傅领进门,学艺在自身”这句话的执行行为。

  三、建立错题本,培养正确的思维习惯

  每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和错因分析。

  一般来说,错题分为三种类型:第一种是特别愚蠢的错误、特别简单的错误;第二种就是拿到题目时一点思路都没有,不知道解题该从何下手,但是一看到答案却恍然大悟;第三种就是题目难度中等,按道理有能力做对,但是却做错了。

  尤其第二种、第三种,必须放到错题本上。建立错题本的好处就是掌握了自己所犯错的类型,为防范一类错误成为习惯性的思维。

  四、成为孩子探讨的伙伴,而非孩子的领导者

  很多家长,在孩子学习的过程中,有意无意的说一些伤及孩子信心的话语,比如:真笨、你怎么跟你老爸一样,看看其他孩子,我怀疑你是不是亲身的,这道题都不会?快别上学了……。

  我承认,思维能力是有超常的孩子,但觉对没有超笨的孩子,思维能力差,一定是外部环境与平时对孩子训练不够。

  作为家长,孩子的第一任老师和生命中影响力最重要的老师,要多表扬、多鼓励,与孩子成为问题探讨的伙伴,而不是孩子的教导者和管理者。

  道理越辩越明。父母要在家庭中创设一种“自由争辩交流”的氛围,当孩子学习遇到困难的时候,争辩、互相交流解决问题的方法;当孩子自己获得新的解题方法时,家长要以平和的心态,耐心地和孩子一起讨论这个解题方法的独特之处。父母和孩子争辩解题思路,能促使孩子通过自由争辩,加深对问题的理解,拓宽思路,促使思维更灵活。这对突破固有的思维束缚、培养思维能力和品质有着良好的帮助。

  五、图形推理是培养逻辑思维能力最好的工具

  假是真时真亦假,真是假时假亦真;逻辑思维是在规则的确定下而进行的思维,如果联系生活就属于非常规思维。一切看似与生活毫无联系却自在法则约束规范的范围内。逻辑推理的“瞒天过海”可谓五花八门,好似一个万花筒,百变无穷,乐趣无穷。

如何培养学生的数学思维9

  具备概括能力和思维能力,是良好思维品质的具体表现。培养学生的概括能力和思维能力,对数学教学具有重要的意义。那么,在数学课堂教学中应当如何有效地培养学生的数学概括能力和思维能力呢?以下谈谈我的看法。

  一、数学概括能力的培养

  数学教学中,应当强调数学的“过程”与“结果”的平衡,要让学生经历数学结论的获得过程,而不是只注意数学活动的结果。这里,“经历数学结论的获得过程”的含义是什么呢?我们认为,其实质是要让学生有机会通过自己的概括活动,去探究和发现数学的规律。

  概括是思维的基础。学习和研究数学,能否获得正确的抽象结论,完全取决于概括的过程和概括的水平。数学的概括是一个从具体向抽象、初级向高级发展的过程,概括是有层次的、逐步深入的。随着概括水平的提高,学生的思维从具体形象思维向抽象逻辑思维发展。数学教学中,教师应根据学生思维发展水平和概念的发展过程,及时向学生提出高一级的概括任务,以逐步发展学生的概括能力。

  在数学概念、原理的教学中,教师应创设教学情境,为学生提供具有典型性的、数量适当的具体材料,并要给学生的概括活动提供适当的台阶,做好恰当的铺垫,以引导学生猜想、发现并归纳出抽象结论。这里,教师铺设的台阶是否适当,主要看它是否能让学生处于一种“似懂非懂”、“似会非会”、“半生不熟”的状态。猜想实际上是在新旧知识相互作用的过程中,学生对新知识的尝试性掌握。教师设计教学情境时,首先,应当在分析新旧知识间的本质联系与区别的基础上,紧密围绕揭示知识间本质联系这个目的,安排猜想过程,促使学生发现内在规律;其次,应当分析学生已有数学认知结构与新知识之间的关系,并确定同化(顺应)模式,从而确定猜想的主要内容;再次,要尽量设计多种启发路线,在关键步骤上放手让学生猜想,使学生的思维真正经历概括过程。

  概括的过程具有螺旋上升、逐步抽象的特点。在学生通过概括获得初步结论后,教师应当引导学生把概括的结论具体化。这是一个应用新获得的知识去解决问题的过程,是对新知识进行正面强化的过程。在这个过程中,学生的认知结构与新结论之间的适应与不适应之间的矛盾最容易暴露,也最容易引起学生形成适应的刺激。

  在概括过程中,要重视变式训练的作用,通过变式,使学生达到对新知识认识的全面性;还要重视反思、系统化的作用,通过反思,引导学生回顾数学结论概括的整个思维过程,检查得失,从而加深对数学原理、通性通法的认识;通过系统化,使新知识与已有认知结构中的相关知识建立横向联系,并概括出带有普遍性的规律,从而推动同化、顺应的深入。

  数学的表现方式是形式化的逻辑体系,数学理论的最后确立依赖于根据假定进行抽象概括的能力。因此,教师应当引导学生学会形式抽象,实际上这是一个高层次的概括过程,在这个过程中,学生的逻辑推理能力可以得到很好的.培养。

  二、学生的思维品质培养

  心理学家认为,培养学生的数学思维品质是发展数学能力的突破口。思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维的不同方面的特征,因此在教学过程中应该有不同的培养手段。

  数学的性质决定了数学教学既要以学生思维的深刻性为基础,又要培养学生的思维深刻性。数学思维的深刻性品质的差异集中体现了学生数学能力的差异,教学中培养学生数学思维的深刻性,实际上就是培养学生的数学能力。数学教学中应当教育学生学会透过现象看本质,学会全面地思考问题,养成追根究底的习惯。对于那些容易混淆的概念,如正数与非负数、空集F和集合{0}、锐角和第一象限的角、充分条件和必要条件等等,可以引导学生通过辨别对比,认清概念之间的联系与区别,在同化概念的同时,使新旧概念分化,从而深刻理解数学概念。通过变式教学揭示并使学生理解数学概念、方法的本质与核心。在解题教学中,引导学生认真审题,发现隐蔽关系,优化解题过程,寻找最佳解法等等。

  数学思维的敏捷性,主要反映了正确前提下的速度问题。因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。另外,运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。因此,数学教学中,应当时刻向学生提出速度方面的要求,另外还要使学生掌握速算的要领。例如,每次上课时都可以选择一些数学习题,让学生计时演算;结合教学内容教给学生一定的速算要领和方法;常用的数字,如20以内自然数的平方数、10以内自然数的立方数、特殊角的三角函数值、无理数、、π、е、lg2、lg3的近似值都要做到“一口清”;常用的数学公式如平方和、平方差、立方和、立方差、一元二次方程的有关公式、对数和指数的有关公式、三角函数的有关公式、各种面积、体积公式、基本不等式、排列数和组合数公式、二项式定理、复数的有关公式、斜率公式、直线、二次曲线的标准方程等等,都要做到应用自如。实际上,速算要领的掌握和熟记一些数据、公式等,在思维活动中是一个概括的过程,同时也训练了学生的数学技能,而数学技能的泛化就成为能力。

  数学思维功能僵化现象在学生中是大量存在的,这与学生平时所受的思维训练有很大关系。教师在教学过程中过分强调程式化和模式化;例题教学中给学生归纳了各种类型,并要求学生按部就班地解题,不许越雷池一步;要求学生解答大量重复性练习题,减少了学生自己思考和探索的机会,导致学生只会模仿、套用模式解题。灌输式的教学使学生的思维缺乏应变能力。因此,为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。教学实践表明,变式教学对于培养学生思维的灵活性有很大作用,在概念教学中,使学生用等值语言叙述概念,数学公式教学中,要求学生掌握公式的各种变形,都有利于培养思维的灵活性。另外,思维的灵活性与思维的敏捷性是相互依存的,因此数学教学中采取措施(如编制口答练习题)加快学生的思维节奏,对于培养学生的思维灵活性也是很有好处的。

如何培养学生的数学思维10

  一、注意培养学生的比较能力

  六年级数学中有许多联系密切,但容易混淆的概念。如何使学生找出它们之间的区别和联系,从而形成正确的概念呢?我通常的做法是,利用教材,借助比较的方法提高学生的辨析能力。

  例如:在进行分数乘除法应用题教学时,为了使学生对分数乘除法应用题的结构,解法与解题思路的异同有清楚的了解,我抓住两点进行教学,一是比较的标准--弄清两数相比时,以哪个为标准;二是比较的结果--弄清不同的比较形式所得出的比较结果的含意。同样,在教学中借助线段图分析应用题的数量关系时,要求学生先画作为标准的线段,再画表示与这个标准相比的线段。

  有这样一道题:

  (1)两捆电线:一捆长120米,比另一捆短三分之一,另一捆电线长多少米?

  (2)有两捆电线,一捆长120米,另一捆比它短1/3,另一捆长多少米?

  在教学时,我先引导学生比较这两小题的不同点,再比较相同点。

  通过比较,学生明白,第(1)题是第一捆长度与另一捆比,另一捆长度作标准,第(2)题是另一捆长度与第一捆长比。第一捆长度作标准,虽然比值相同,但由于比较的标准不同,比较所得的结果的含义也就不同。因此这两小题的数量关系式不同,解题方法也就不同。在列出分数乘除法算式后,我再次引导学生对这两个算式进行比较,加深了学生对三个数量之间的关系的理解。进一步弄清了分数乘除法应用题之间的联系和区别。

  二、注意培养学生的分析、综合的'能力。

  分析与综合是思维的基本过程,也是重要的逻辑思维方法。根据六年级学生的特点,在进行应用题教学时,我通常做法是引导学生从借助线段图进行分析,综合到根据所给的条件和问题进行分析、综合,重视概念教学,计算教学和几何初步知识教学中培养学生的分析、综合能力。

  例如,在学习长方体、正方体后,我出示这样一道题:“一个棱长8厘米的正方体木块,?表面全部涂上红颜色,然后把它分成棱长是2厘米的小正方体若干块,其中三面有红颜色,二面有红颜色,一面有红颜色,没有红颜色的各有多少块?”初看这道题,似乎不大好下手,我没有急于让学生求成。而是先让学生说出正方体的特征,?然后让学生探讨把大正方体分成棱长2厘米的小正方体若干块怎样分割?在取得一致结论后,接着让他们思考:分成的小正方体共有多少块?

如何培养学生的数学思维11

  一、指导观察

  观察是信息输入的通道,是思维探索的大门.敏锐的观察力是创造思维的起步器.可以说,没有观察就没有发现,更不能有创造.儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?

  首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求.其次,要在观察中及时指导.比如要指导学生根据观察的对象有顺序地进行观察,要知道学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等.第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入地观察.第四,要努力培养学生浓厚的观察兴趣.;例如教学《圆的认识》时,我把一根细线的两端各系一个小球,然后甩动其中一个小球,使它旋转成一个圆.引导学生观察小球被甩动时,一端固定不动,另一端旋转一周形成圆的过程.提问:“你发现了什么?”学生纷纷发言:“小球旋转形成了一个圆.”“小球始终绕着中心旋转而不跑到别的地方去.”“我还看见好象有无数条线.”……从这些学生朴素的语言中,其实蕴含着丰富的内涵,渗透了圆的定义:到顶点的距离相等的点的轨迹.看到“无数条线”则为理解圆的半径有无数条提供感性材料.

  二、引导想象

  想象是思维探索的翅膀.爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙.”在教学中,引导学生进行数学想象,往往能缩短解决问题的时间.获得数学发现的机会,锻炼数学思维.

  想象不同于胡思乱想.数学想象一般有以下几个基本要素.第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持.第二,是要有能迅速摆脱表象干扰的敏锐洞察力和丰富的想象力.第三,要有执着追求的情感.因此,培养学生的想象力,首先要使学生学好有关的基础知识.其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象.例如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时变成什么图形?与提醒面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底为0的梯形,平行四边形可以看作是上底和下底相等的梯形.这样拓宽了学生思维的空间,培养了学生想象思维的能力.

  三、鼓励求异

  求异思维是创造思维发展的基础.它具有流畅性、变通性和创造性的`特征.求异思维是指从不同角度,不同方向,去想别人没想到的,去找别人没有找到的方法和窍门.要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能独特,即与众不同的思路.课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望.例如:教学《分数应用题》时,有这么一道习题:“修路队修一条3600米的公路,前4天修了全长的1/6,照这样的速度,修完余下的工程还要多少天?”就要引导学生从不同角度去思考,用不同方法去解答.用上具体量,解法1:3600÷(3600×1/6÷4)-4;解法2:(3600-3600×1/6)÷(3600×1/6÷4);解法3:4×[(3600-3600×1/6)]÷(3600×1/6÷4).思维较好的同学将本题与工程问题联系起来,抛开3600米这个具体量,将全程看作单位“1”,解法4:1÷(1/6÷4)-4;解法5:(1-1/6)÷(1/6÷4);解法6:4×(1÷1/6-1);此时学生思维处于高度活跃状态,又有同学想出:解法7:4÷1/6-4;解法8:4×(1÷1/6)-4;解法9:4×(6-1).学生在求异思维中不断获得解决问题的简捷方法,有利于各层次的同学参与,有利于创造思维能力的发展.

  四、诱发灵感

  灵感是一种直觉思维.它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路.它是认识上质的飞跃.灵感的发生往往伴随着突破和创新.

  在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定.同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口.

  例如,有这样的一道题:把3/7、6/13、4/9、12/25用“>”号排列起来.对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦.为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/3、13/6、9/4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法.

  总之,人贵在创造,创造思维是创造力的核心.培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起.

如何培养学生的数学思维12

  思维能力是各种能力的核心;而培养和提高小学生的思维能力与思维水平,往往要借助思维的敏捷性、深刻性与灵活变通性等思维品质来实现。而比较又是一切思维的基础。引导学生充分地运用比较的方法去认识、分析和处理问题,有意识地注意培养良好的思维品质,是提高数学教学效果的重要途径。以下就本人多年的教学经验谈谈如何运用比较法来培养学生的数学思维能力。

  1、引导比较,形成概念。

  人们认识事物总是从区分事物开始的,要区分事物首先必须进行比较,通过比较在思想上确定事物的异同点,从而获得确切的概念。如在教学“三角形”时,教师先让学生观察几种形状不同的三角形(锐角三角形、钝角三角形、直角三角形)。然后引导学生进行观察、比较这三类三角形的异同点,得出“钝角三角形” 最本质的属性是“有一个内角是钝角的三角形”这个概念。又如在对正方形、长方形、平行四边形、梯形等的观察比较中,得出梯形的本质属性,形成“只有一组对边平行的四边形是梯形”这个科学概念。

  2、通过比较,发现规律

  事物的变化都具有一定的规律。在教数学概念时,不能将概念直接告诉学生,让学生机械地死记硬背,而应该有意识地引导学生观察比较,发现规律,这样有利于学生养成良好的思维品质。如能经常引导学生不断地进行有意识的对比、观察、对比练习,引导他们从中发现,这对于提高学生的观察力,发展创造力大有脾益。

  3、运用比较,激发思维

  思维具有问题性的特点。任何思维都是从发现问题开始,以解决问题而告终。为了强化知识的“弱点”,教师在教学中,要注意采用比较的方法,来激发学生的思维动机,唤起求知欲 我们知道,集中思维有利于思维的确定性、规范性,而发散思维有利于思维的灵活性、创造性。这两种思维往往是密切联系、不可分割的。因此,在数学教学中应当把发展学生思维能力特别是发散性思维能力的培养作为教学的核心。注意启发引导学生在思考问题时能深入问题的本质,引导学生从多角度去认识问题,寻找解决问题的.最佳方法。

  4、在比较中实现知识的转化

  从学生的认识活动规律来说,他们每学习一个新知识都要经过从具体到抽象的过程,掌握了新知识以后,又要经过从具体到抽象的转化过程。为了使小学生能更好地学会比较和运用比较;在比较中发现异同,揭示规律,形成概念教师应给他们正确的引导,如先比异,后比同;先巩固对一种事物的认知,再展开与其他事物进行对比等,做到在教学中正确地运用比较,启发学生展开想象,发展思维,提高能力。

  比较类型--趣味数学题

  1、黑兔、兔和白兔三只兔子在赛跑。黑免说:“我跑得不是最快的,但比白兔快。”请你说说,谁跑得最快?谁跑得最慢?

  ( )跑得最快,( )跑得最慢。

  2、三个小朋友比大小。根据下面三句话,请你猜一猜,谁最大?谁最小? (1)芳芳比阳阳大3岁; (2)燕燕比芳芳小1岁; (3)燕燕比阳阳大2岁。 ( )最大,( )最小。

  3、根据下面三句话,猜一猜三位老师年纪的大小。

  (1)王老师说:“我比李老师小。” (2)张老师说:“我比王老师大。” (3)李老师说:“我比张老师小。” 年纪最大的是( ),最小的是( )。

  4、光明幼儿园有三个班。根据下面三句括,请你猜一措,哪一班人数最少?哪一班人数最多? (1)中班比小班少; (2)中班比大班少; (3)大班比小班多。 ( )人数最少,( )人数最多。

  5、三个同学比身高。 甲说:我比乙高; 乙说:我比丙矮; 丙:说我比甲高。 ( )最高,( )最矮。

  6、四个小朋友比体重。 甲比乙重,乙比丙轻,丙比甲重,丁最重。 这四个小朋友的体重顺序是: ( )>( )>( )>( )。

  7、小清、小红、小琳、小强四个人比高矮。

  小清说我比小红高;小琳说小强比小红矮; 小强说:小琳比我还矮。 请按从高到矮的顺序把名字写出来: ( )、( )、( )、( )。

  8、有四个木盒子。蓝盒子比黄盒子大;蓝盒子比黑盒子小;黑盒子比红盒子小。请按照从大到小的顺度,把盒子排队。

  ( )盒子,( )盒子,( )盒子,( )盒子。

  9.张、黄、李分别是三位小朋友的姓。根据下面三句话,请你猜一猜,三位小朋友各姓什么? (1)甲不姓张; (2)姓黄的不是丙;(3)甲和乙正在听姓李的小朋友唱歌。 甲姓( ),乙姓( ),丙姓( )。

  10.张老师把红、白、蓝各一个气球分别送给三位小朋友。根据下面三句话,请你猜一猜,他们分到的各是什么颜色的气球?

  (1)小春说:“我分列的不是蓝气球。” (2)小宇说:“我分到的不是白气球。”

如何培养学生的数学思维13

  作为数学教师,我们常困惑于学生“学习方法死”,学习时间长效果差,只会仿照例题解几道题,在遇到新问题时,就束手无策。其实,学生中存在的这种现象,与我们的教学方法密不可分,我们都很重视传授知识的正确性、全面性,重视让学生熟记定义、定理、公式,却很少探讨它们的由来和实质,我们认真严格地对每一个定理加以证明,对每个公式加以推导,却忽略证明和推导的思维过程。造成了我们教学中的众多缺陷,使得我们的学生只知模仿,而缺乏独立分析问题的能力。因此,作为教师的我们,就必须随时注重培养学生科学的思维能力,提高他们的思维素质。

  以下是我在教学中的几点体会,以中学数学中常用的几种数学思想和方法为例,进行一些探讨。

  一、注重“转化”思维的训练“

  转化”是数学研究中常用的一种方法。我们知道,数学知识间联系极为密切,许多新问题经过转化都可归结为我们已经了解的问题去解决。有些很难解决的问题通过转化就能归为一个较容易研究的问题。那么,我们首先就要注意培养学生的“转化”思想。具备这种思维能力,对于解决新问题是大有益处的。例如:解方程组问题,当学生学会一元一次方程的解法后,解二元一次方程组时解题的基本思路就是通过消元(或代入消元或加减消元),将其转化为一元一次方程的求解。学生掌握了这种思维方法,当学习三元一次方程组的解法时,就很容易想到将其转化为二元一次方程组,再将其转化为一元一次方程去求解。以后学习分式方程、无理方程等时,学生就不会感到陌生,因为,虽然问题变了,但万变不离其宗,都是把它们转化为已经研究过的方程或方程组去求。有了这样清晰的思路,在解题时,就不会把这些问题孤立起来对待,找不到解题方法。在数学研究中处处体现着转化的思想。如果我们有意识的培养学生的这种思维能力,不仅能让学生把所学知识有机的'联系在一起,而且在遇到新问题时,还会表现出较高的创造性思维能力。

  二、使学生的思维活动展开,培养直觉思维能力

  如何在数学教学中培养直觉思维能力呢?1.注意数形结合,建立智力图象。数量关系借助于图形的性质可以直观化、形象化、简单化。因此,要有目的地帮助学生将抽象的概念与几何图形联系起来考虑,充分揭示概念和数量关系的几何背景,为发展直觉思维创造条件。2.培养观察、猜想、验证能力。有些数学问题的结论需要根据已知条件,通过观察,分析题目最简单、最特殊的情况,从中猜想出问题的一般性结论,进而发现解决问题的途径和方法,这是一项有意义的直觉思维训练。3.训练思维方法,发展直观。直觉思维的具体过程往往是不清楚的,但是,将这减缩的过程慢镜头展示,会发现联想、类比、想象等思维方法的痕迹。

  三、通过课堂教学设计,训练学生思维能力

  我们在传授知识的同时,更重要的是教会学生如何“学”,也就是使学生在掌握知识的思维实践中训练思维。学生往往认为学习定义、定理、公式,只要记住就行了,对定理的证明,公式的推导,很少能给以足够的重视。如果,我们能在这些基础理论的教学中渗透思维训练,那么学生不但能对基础知识理解的更深入,而且学会了解题的思维方法。如在初中几何中,证明等腰三角形两底角相等。我在教学时,引导学生要证两角相等,可利用什么方法?

  构造全等三角形,从而引出三种作辅助线的方法。教材中给出定理的一种证明方法,教材为什么这么证?还有其它证法吗?在研究每一个定理的证明时,我都引导学生讨论这个问题,使学生认识到书上为什么采用这种证明方法,而且还能找到其它证法。通过这种教学,学生独立思考和创新精神可以得以发扬。

  四、在归纳总结中训练思维能力

  我国古代的学者韩愈就提倡要先把书读厚再把书读神实质。如果学生能把学过的每一部分知识进行总结,而且能归纳出解决某类问题的方法,那么他们的知识水平就提高了,运用这部分知识去解决问题的能力也提高了。我们教师应当及时地引导学生进行此项工作。例如:初中几何证明题中会经常遇到证线段相等和角相等的问题,在学生学过了全等三角形后,我们可以归纳出通过三角形全等可证明以上问题,进而回忆总结三角形全等的几种证明方法,在学过等腰三角形性质后,我们还可利用性质定理:即等边对等角的方法来证明。原来书上的定义、定理是按知识顺序排列的,经过这种需要重新复习总结的过程,学生对于运用这些定义定理去解决问题的能力就提高了,对于这些问题的实质就更清楚了,不再苦于找不到解题方法。今天进行这种能力的培养,对他们将来的学习也会受益。

  五、克服解题教学倾向,启迪创新思维我们所说的创新思维指在解决问题时,具有主动性和独特。

  中学数学新大纲已将创新意识和创新思维能力的培养引入教学目的之中。所以,在教学实践中应注重培养学生的创新思维能力。首先,应培养学生学习兴趣,强化应用意识,激发学生的创新欲望。其次,在解题时,引导学生打破思维定势,变换思维角度,从不同角度去探究,拓展广阔的思维空间。在注重题型归类的同时,注意设法营造发散点,提高创新思维能力。另外,在解决问题之后,进一步对题目特征、解题思路、途径、方法、结论作反思,从解题规律、解题设计、适用范围、推广变式等多个方面进一步暴露数学解题的思维过程,把学生从题海中解放出来,做到举一反三,触类旁通,从而达到训练思维的目的。

如何培养学生的数学思维14

  小学数学思维与兴趣培养的一致性

  随着教学改革的深入发展,在数学教学中有目的、有计划、有步骤地培养学生的思维能力,是每个教师十分关心的问题。教师应吃透教材,把握教材中的智力因素,积极地进行教学。数学教学中激发学生学习兴趣是非常重要的环节。从心理角度而言,如抓住学生的某些心理特征,对教学将起到一个巨大的推动作用。兴趣的培养就是一个重要的方面,兴趣能激发大脑组织,加工有利于发现事物的新要素,并进行探索创造。兴趣是学习的最佳营养和催化剂。学生对学习有兴趣,对学习材料的反映也就最清晰。思维活动是最积极有效的,它能使学习取得事半功倍的效果。我在充分发挥教师的主导作用的前提下,对激发学生兴趣谈几点体会。

  1.观察能力的培养,学习兴趣的产生

  观察能力是认识事物,增长知识的重要能力,是智力因素构成的重要部分。在小学数学教学中必须引导学生掌握基本的观察方法,学会在观察时透过事物表象,抓住本质,发现规律,达到不断获取知识,培养能力,发展智力的目的。我认为人们对知识的认识和积累都是通过观察实践而得到的。没有观察就没有丰富的想象力,也不可能有正确的推理、概括和创造性,所以有意识地安排学生去观察思考,逐步培养学生的观察能力,发展学生的想象力。既增加了数学的趣味性,又创造了良好的课堂气氛。

  2.加强直观教学,培养学习兴趣

  在教学中教师单从提高语言表达能力和语言“直观”上下功夫,还是远远不够的。要解决数学知识的抽象性与形象性的矛盾,还应该充分利用直观教学的各种手段。“直观”具有看得见,摸得着的优点,“直观”有时能直接说明问题,有时能帮助理解问题,给学生留下深刻的印象,使学生从学习中得到无穷的乐趣。由直观感知上升到抽象的理解。有了这个基础求一个数比另一个数多少的教学就根顺利了,体现了“直观”教学的优越性。

  3.重视操作,培养实际动手能力

  一位教育家这样说过:“儿童的智慧就在他的手指尖上”。许多事实证明科学是动手“做”出来的。我们在学习数学的过程中,也要学会“做”数学,比如量身高,可以帮助我们理解米和厘米等长度单位的概念,对其有具体的感知;走一段路程,可以帮助我们正确理解“千米”的含义;称称一两块砖和一两枚硬币,可以帮助我们弄清“千克”和“克”的区别;剪几个对等的三角形拼成长方形或平行四边形,又可让我们得出并掌握三角形面积的计算方法。总之,在动手操作的过程中,可以引发我们创造性地思维。

  在数学教学中教师要特别重视和发展学生的好奇心,让每一位学生养成爱想问题、问问题以及延伸问题的习惯,让所有的学生都知道自己有权利和能力去发现新问题,提出新见解。以下再对培养思维简单地谈一谈。

  3.1善于运用启发法和发现法,启发学生思维的积极性

  一个优秀的教师会懂得针对不同的学生能力差异,采取适合不同学生的教学方式。面对同一道数学题,用什么样的语言表达让学生尽快地接受。如果题意不懂,便可采用启发、举例的方法让学生接受,发现突破口,用通俗简易的手势或图形来化繁为简。这样可以增加学生的兴趣和对思维的积极性。使学生在掌握教师的方法下,通过发散性思维,使他们明白学习方法的重要性,从而产生爱动脑筋、思考问题的习惯。

  3.2精心设计教学内容,培养学生的求异思维

  这一点要求老师要有过硬的专业知识,善于发现教材中所隐含的深意,而不是仅仅停留在表面上做功夫。教师还应将拓展意识运用到数学课上。例如涉及到语文知识,可以多讲一些与其相关的,让学生们理解各学科之间的联系,并且融会贯通,从真正意义上产生对知识需求的渴望。

  3.3利用一题多解培养学生的“立体思维模式”

  一题多解是学生产生浓厚兴趣的.基础,也是培养锻炼学生思维能力的重要源泉下面我们就来举一个一题多解的例子。

  从以上所谈的这些看来,二者有一个共同点。思维能力的培养是伴随着兴趣的产生的,而浓厚的兴趣是靠着反映敏捷的思维作铺垫的。两者之间一种无意识的连接关系,是一同成长的。所以在教学中不能只重视激发兴趣,也不能只重视思维能力的培养。应该着眼于两者之间的内在联系。兴趣是思维发展的平台,思维是兴趣的基础,兴趣不是天生的,而是在思维潜意识中某些问题的探索而产生的结果。

  因此,在数学教学中,教师要特别注意培养学生根据题目中的具体条件,自觉灵活地运用数学方法,通过变换角度思考问题。这样,就可以发现新方法,制定新策略,长期坚持这样的方祛训练, 学生一定能产生浓厚的学习数学、 运用数学的兴趣。

  让我们给学生一片广阔的天地,给他们一个自由发挥的空间,让他们乐学、好学,让他们的数学思维能力在课堂学习中得到充分的发展!

如何培养学生的数学思维15

  [摘要]创新能力,是指人在顺利完成以原有知识、经验为基础的创建新事物的活动过程中表现出来的潜在的心理品质。而创新能力的作用就是教人如何进行创新实践,如何解决遇到的各种现实问题。

  [关键词]创新思维,创新意识,个性品质,数学思维能力,创新人才

  创新思维的培养不仅是学数学的需要,更是时代的要求。作者根据自己多年的教学实践,就在教学中如何培养学生的创新思维作出了阐释。

  一、深化理性思维,改善思维品质,培养创新意识

  兴趣是培养学生创新意识的前提,是构成创新动机最现实、最活泼的心理成份,是创新的动力源泉。教学中应充分利用教材,恰当的引导,适时的启发,激发不同层次学生的学习动力、兴趣,调整学生学习心理的转变,有意识的培养学生有效的思维意识和思维习惯。

  1.培养学生观察问题,发现问题,解决问题的思维习惯,激发创新意识

  人们发现新问题的能力是与大脑的积极思维分不开的,培养学生发现问题的能力是培养创新意识的前提。数学知识的获得,主要是通过对实物和模型的观察和思考,抽象概括出它们的本质属性,并用自己的语言给出定义或命题;让学生发现数学问题的解决过程,体验思维的形成过程。

  例如,将边长为3的正方体的六个面涂上颜色,而后分割成大小均匀的边长为1的正方体,则所得小正方体中只有一个面有颜色的概率是(B)。

  A.827B.29C.127D.49

  分析:“将边长为3的正方体的六个面涂上颜色,而后分割成大小均匀的边长为1的正方体”在生活中的实物模型—魔方:

  所得小正方体中,①三个面有颜色的是位于原正方体八个顶点的八个小正方体;

  ②二个面有颜色的是位于原正方体十二条棱中间的十二个小正方体;

  ③一个面有颜色的是位于原正方体六个面正中间的六个小正方体;

  ④没有面有颜色的是位于原正方体正中心的一个小正方体。

  【评述】培养学生发现问题的能力,着重是培养学生数学地提出问题的能力,以及分析问题,解决问题的能力及过程。上述解决问题的过程是:数学问题情景—实物(或模型)—特征分析—归类整理—数学计算—结论。不但起到了巩固固有的思维结构与形式,而且收到了发散结论的思维效果。

  2.培养学生的质疑能力,促进创新意识的萌动

  创新思维是从发现问题开始的,“学起于思,思源于疑”。疑,是点燃学生思维的火种,有疑问才会去探索。如果对某些地方大胆质疑,便可促其深思,以求悟解。在数学教学中,要鼓励学生质疑,问难,敢于思考、猜测,敢于超越常规;鼓励学生善于生疑,反思。学生质疑越多,求知欲越旺,兴趣会越浓,这样学生的创新意识、创新思维、创新精神就会在质疑、解疑中得到培养和提高。

  例如,异面直线间的距离的求法—线面间的距离,这一转化一旦直接提出学生是很难接受的,在其思维活动中必然产生疑虑,促使其利用现有知识去佐证:异面直线的公垂线的找法,从而整理如下材料。

  ①a,b为异面直线,过直线b上一点B有且只有一条直线c与a平行;-a∥c;

  ②过两条相交直线b,c有且只有一个平面α-a∥α;

  ③过直线a上一点A有且只有一条直线d与平面α垂直于C;-d⊥α即-AC⊥α;

  ④直线a∩直线d=A,过b,c有且只有一个平面β,使得β⊥α于直线e;-β⊥α;

  ⑤a∥α,a∩β,α∩β=e,则a∥e,又由a∥c知e∥c;

  ⑥在平面α中,e∥c,b∩c=B则b∩e=D;

  ⑦在平面β中,a∥e,过D有且只有一条直线f与d平行且f⊥a于E即DE∥AC且DE=AC;

  ⑧DE⊥a与E,DE⊥b与D则DE即为直线a,b的公垂线段亦即异面直线a,b间的距离。

  结论:异面直线a,b间的距离即为直线a到平面α的距离AC。

  【评述】在疑问中探索,不仅能加强思维的形成过程,而且能拓展思维的广度,深度,促进创新意识的原始萌动。

  3.加强学生个性品质的养成,增强创新意识

  个性品质是指学生具有一定的数学视野及数学意识,认识数学的.科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义。在课堂上要培养学生创造性的心理素质,就必须尊重学生个性,努力创造一个让学生积极主动参与的教学活动,并敢于发表自己见解的民主氛围,让不同层次的学生获得不同程度的成功。在教学中要充分发挥学生的自主性和创造性,善于适时利用课堂中的每次“意外”,引导学生,鼓励学生即兴创造,超越预设的教学目标。

  二、培养学生的数学思维能力,提高探究能力,发展学生的创新意识和实践能力

  数学教学中注重培养学生数学地提出问题,分析问题和解决问题的能力,发展学生的创新意识和实践能力,提高学生数学探究能力,数学建模能力和数学交流能力。努力培养学生的数学思维能力。

  1.“纵横联系”形成类比,培养学生思维的连续性,拓展性,发展学生的创新意识

  类比,是一种思维跳跃,借助于类比,可以发现新领域里的新结论。教学中有意识地对相关知识模块进行比较,找出其异同点,以此获得更新,更高的理解,所以说类比是培养学生创新思维的一种重要方法。

  例如,同一平面中线线位置关系→空间平面与平面;平面向量→空间向量。

  2.“往前多走一步”,通过归纳,培养学生思维的全面性,深刻性,培养学生创新思维

  归纳是由特殊到一般的认知过程;是通过对特例或事物的一部分进行观察与综合,进而发现和提出一般性结论或规律的过程;归纳能使我们迅速地发现事物的特征、属性和规律,是我们作出科学猜想的基础和依据,是发现数学问题的重要手段之一。因此,借助归纳是培养学生发现能力和创新思维的一条基本途径。

  例如,求数列的通项的8种模式。

  3.“多反思”,通过变式培养学生的发散思维,形成探索意识

  教学中要求学生思考问题时要注重多思路,多方法,换角度;解决问题时要注重多路径,多方式。对同一个问题,从不同的方向、不同的角度、不同的层次横向拓展,纵向深入,去探索、转化、变换、迁移、分析,激发学生潜能,提高学生素质。

  例如,全集I={1,2,3,4,5},{1,3}?A?I,则符合条件的集合A有()个。

  变式1{1,3}?A?I,则符合条件的集合A有()个。

  变式2{1,3}?A?I,则符合条件的集合A有()个。

  变式3{1,3}?A?I,则符合条件的集合A有()个。

  【评述】变式训练不仅能增强例题的使用价值,强化了固有思维模式极其形成过程,而且培养了学生的发散思维,挖掘了学生的创新潜力,形成探究意识。

  综上所述,我们应以培养学生创新思维为核心目标,充分给予学生自主学习的机会,鼓励学生敢于探索,勇于创新,科学运用数学思想、观点和方法解决问题,为一代创新人才的培养打下坚实的基础。

【如何培养学生的数学思维】相关文章:

如何培养学生的数学思维12-23

如何培养学生思维能力12-08

如何培养学生思维能力[实用]12-09

如何培养学生思维能力经典【15篇】12-09

如何培养学生思维能力【优选15篇】12-08

如何培养学生思维能力(集合15篇)12-09

(精华)如何培养学生思维能力15篇12-09

如何培养学生能力04-11

如何培养与发展学生的能力08-31