欢迎来到瑞文网!

高三物理知识点总结

时间:2022-03-01 10:47:56 高三物理知识点总结 我要投稿

高三物理知识点总结

  高三物理知识点总结(精选30篇)

  临近高考,有些人也终于开始注重学习起来,身边的人无一不是做好准备面临为此小编整理了高三物理知识点总结(精选30篇),希望对你有所帮助!

  高三物理知识点总结1

  1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式。为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动。

  2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型。仅凭物体的大小不能做视为质点的依据。

  3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量。路程是物体运动轨迹的长度,是标量。

  路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程。

  4.速度和速率

  (1)速度:描述物体运动快慢的物理量。是矢量。

  ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述。

  ②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧。瞬时速度是对变速运动的精确描述。

  (2)速率:

  ①速率只有大小,没有方向,是标量。

  ②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率。在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等。

  5.运动图像

  (1)位移图像(s—t图像):

  ①图像上一点切线的斜率表示该时刻所对应速度;

  ②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;

  ③图像与横轴交叉,表示物体从参考点的一边运动到另一边。

  (2)速度图像(v—t图像):

  ①在速度图像中,可以读出物体在任何时刻的速度;

  ②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值。

  ③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率。

  ④图线与横轴交叉,表示物体运动的速度反向。

  ⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动。

  高三物理知识点总结2

  摩擦力

  1、定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。

  2、产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。

  说明:三个条件缺一不可,特别要注意“相对”的理解。

  3、摩擦力的方向:

  ①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。

  ②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。

  说明:

  (1)“与相对运动方向相反”不能等同于“与运动方向相反”。滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。

  (2)滑动摩擦力可能起动力作用,也可能起阻力作用。

  4、摩擦力的大小:

  (1)静摩擦力的大小:

  ①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过静摩擦力,即0≤f≤fm但跟接触面相互挤压力FN无直接关系。具体大小可由物体的运动状态结合动力学规律求解。

  ②静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。

  ③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。

  (2)滑动摩擦力的大小:

  滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。

  公式:F=μFN(F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。

  说明:

  ①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。

  ②μ与接触面的材料、接触面的情况有关,无单位。

  ③滑动摩擦力大小,与相对运动的速度大小无关。

  5、摩擦力的效果:总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。

  说明:滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关。

  动量守恒

  所谓“动量守恒”,意指“动量保持恒定”。考虑到“动量改变”的原因是“合外力的冲”所致,所以“动量守恒条件”的直接表述似乎应该是“合外力的冲量为O”。但在动量守恒定律的实际表述中,其“动量守恒条件”却是“合外力为。”。究其原因,实际上可以从如下两个方面予以解释。

  (1)“条件表述”应该针对过程

  考虑到“冲量”是“力”对“时间”的累积,而“合外力的冲量为O”的相应条件可以有三种不同的情况与之对应:第一,合外力为O而时间不为O;第二,合外力不为0而时间为。;第三,合外力与时间均为。显然,对应于后两种情况下的相应表述没有任何实际意义,因为在“时间为。”的相应条件下讨论动量守恒,实际上就相当于做出了一个毫无价值的无效判断―“此时的动量等于此时的动量”。这就是说:既然动量守恒定律针对的是系统经历某一过程而在特定条件下动量保持恒定,那么相应的条件就应该针对过程进行表述,就应该回避“合外力的冲量为O”的相应表述中所包含的那两种使“过程”退缩为“状态”的无价值状况。

  (2)“条件表述”须精细到状态

  考虑到“冲量”是“过程量”,而作为“过程量”的“合外力的冲量”即使为。,也不能保证系统的动量在某一过程中始终保持恒定。因为完全可能出现如下状况,即:在某一过程中的前一阶段,系统的动量发生了变化;而在该过程中的后一阶段,系统的动量又发生了相应于前一阶段变化的逆变化而恰好恢复到初状态下的动量。对应于这样的过程,系统在相应过程中“合外力的冲量”确实为O,但却不能保证系统动量在过程中保持恒定,充其量也只是保证了系统在过程的始末状态下的动量相同而已,这就是说:既然动量守恒定律针对的是系统经历某一过程而在特定条件下动量保持恒定,那么相应的条件就应该在针对过程进行表述的同时精细到过程的每一个状态,就应该回避“合外力的冲量为。”的相应表述只能够控制“过程”而无法约束“状态。

  ‘弹性正碰”的“定量研究”

  “弹性正碰”的“碰撞结果”

  质量为跳,和m:的小球分别以vl。和跳。的速度发生弹性正碰,设碰后两球的速度分别为二,和二2,则根据碰撞过程中动量守恒和弹性碰撞过程中系统始末动能相等的相应规律依次可得。

  “碰撞结果”的“表述结构”

  作为“碰撞结果”,碰后两个小球的速度表达式在结构上具备了如下特征,即:若把任意一个小球的碰后速度表达式中的下标作“1”与“2”之间的代换,则必将得到另一个小球的碰后速度表达式。“碰撞结构”在“表述结构”上所具备的上述特征,其缘由当追溯到“弹性正碰”所遵循的规律表达的结构特征:在碰撞过程动量守恒和碰撞始末动能相等的两个方程中,若针对下标作“1”与“2”之间的代换,则方程不变。

  “动量”与“动能”的切入点

  “动量”和“动能”都是从动力学角度描述机械运动状态的参量,若在其间作细致的比对和深人的剖析,则区别是显然的:动量决定着物体克服相同阻力还能够运动多久,动能决定着物体克服相同阻力还能够运动多远;动量是以机械运动量化机械运动,动能则是以机械运动与其他运动的关系量化机械运动。

  光子说

  ⑴量子论:1900年德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量。

  ⑵光子论:1905年爱因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。

  光的波粒二象性

  光既表现出波动性,又表现出粒子性。大量光子表现出的波动性强,少量光子表现出的粒子性强;频率高的光子表现出的粒子性强,频率低的光子表现出的波动性强。

  实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。满足下列关系:

  从光子的概念上看,光波是一种概率波。

  电子的发现和汤姆生的原子模型:

  ⑴电子的发现:

  1897年英国物理学家汤姆生,对阴极射线进行了一系列研究,从而发现了电子。

  电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。

  ⑵汤姆生的原子模型:

  1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

  氢原子光谱

  氢原子是最简单的原子,其光谱也最简单。

  1885年,巴耳末对当时已知的,在可见光区的14条谱线作了分析,发现这些谱线的波长可以用一个公式表示:

  式中R叫做里德伯常量,这个公式成为巴尔末公式。

  除了巴耳末系,后来发现的氢光谱在红外和紫个光区的其它谱线也都满足与巴耳末公式类似的关系式。

  氢原子光谱是线状谱,具有分立特征,用经典的电磁理论无法解释。

  高三物理知识点总结3

  1.交变电流:大小和方向都随时间作周期性变化的电流,叫做交变电流。按正弦规律变化的电动势、电流称为正弦交流电。

  2.正弦交流电——(1)函数式:e=Emsinωt(其中★Em=NBSω)

  (2)线圈平面与中性面重合时,磁通量,电动势为零,磁通量的变化率为零,线圈平面与中心面垂直时,磁通量为零,电动势,磁通量的变化率。

  (3)若从线圈平面和磁场方向平行时开始计时,交变电流的变化规律为i=Imcosωt。

  (4)图像:正弦交流电的电动势e、电流i、和电压u,其变化规律可用函数图像描述。

  3.表征交变电流的物理量

  (1)瞬时值:交流电某一时刻的值,常用e、u、i表示。

  (2)值:Em=NBSω,值Em(Um,Im)与线圈的形状,以及转动轴处于线圈平面内哪个位置无关。在考虑电容器的耐压值时,则应根据交流电的值。

  (3)有效值:交流电的有效值是根据电流的热效应来规定的。即在同一时间内,跟某一交流电能使同一电阻产生相等热量的直流电的数值,叫做该交流电的有效值。

  ①求电功、电功率以及确定保险丝的熔断电流等物理量时,要用有效值计算,有效值与值之间的关系

  E=Em/,U=Um/,I=Im/只适用于正弦交流电,其他交变电流的有效值只能根据有效值的定义来计算,切不可乱套公式。②在正弦交流电中,各种交流电器设备上标示值及交流电表上的测量值都指有效值。

  (4)周期和频率——周期T:交流电完成一次周期性变化所需的时间。在一个周期内,交流电的方向变化两次。

  频率f:交流电在1s内完成周期性变化的次数。角频率:ω=2π/T=2πf。

  4.电感、电容对交变电流的影响

  (1)电感:通直流、阻交流;通低频、阻高频。

  (2)电容:通交流、隔直流;通高频、阻低频。

  5.变压器:

  (1)理想变压器:工作时无功率损失(即无铜损、铁损),因此,理想变压器原副线圈电阻均不计。

  (2)★理想变压器的关系式:

  ①电压关系:U1/U2=n1/n2(变压比),即电压与匝数成正比。

  ②功率关系:P入=P出,即I1U1=I2U2+I3U3+…

  ③电流关系:I1/I2=n2/n1(变流比),即对只有一个副线圈的变压器电流跟匝数成反比。

  (3)变压器的高压线圈匝数多而通过的电流小,可用较细的导线绕制,低压线圈匝数少而通过的电流大,应当用较粗的导线绕制。

  6.电能的输送——(1)关键:减少输电线上电能的损失:P耗=I2R线

  (2)方法:

  ①减小输电导线的电阻,如采用电阻率小的材料;加大导线的横截面积。

  ②提高输电电压,减小输电电流。前一方法的作用十分有限,代价较高,一般采用后一种方法。

  (3)远距离输电过程:输电导线损耗的电功率:P损=(P/U)2R线,因此,当输送的电能一定时,输电电压增大到原来的n倍,输电导线上损耗的功率就减少到原来的1/n2。

  (4)解有关远距离输电问题时,公式P损=U线I线或P损=U线2R线不常用,其原因是在一般情况下,U线不易求出,且易把U线和U总相混淆而造成错误。

  高三物理知识点总结4

  机械振动在介质中的传播称为机械波(mechanical wave)。机械波与电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的许多物理性质,如:折射、反射等是一致的,描述它们的物理量也是相同的。常见的机械波有:水波、声波、地震波。

  机械振动产生机械波,机械波的传递一定要有介质,有机械振动但不一定有机械波产生。

  形成条件

  波源

  波源也称振源,指能够维持振动的传播,不间断的输入能量,并能发出波的物体或物体所在的初始位置。波源即是机械波形成的必要条件,也是电磁波形成的必要条件。

  波源可以认为是第一个开始振动的质点,波源开始振动后,介质中的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。

  介质

  广义的介质可以是包含一种物质的另一种物质。在机械波中,介质特指机械波借以传播的物质。仅有波源而没有介质时,机械波不会产生,例如,真空中的闹钟无法发出声音。机械波在介质中的传播速率是由介质本身的固有性质决定的。在不同介质中,波速是不同的。

  传播方式与特点

  机械波在传播过程中,每一个质点都只做上下(左右)的简谐振动,即,质点本身并不随着机械波的传播而前进,也就是说,机械波的一质点运动是沿一水平直线进行的。例如:人的声带不会随着声波的传播而离开口腔。简谐振动做等幅震动,理想状态下可看作做能量守恒的运动.阻尼振动为能量逐渐损失的运动.

  为了说明机械波在传播时质点运动的特点,现已绳波(右下图)为例进行介绍,其他形式的机械波同理[1]。

  绳波是一种简单的横波,在日常生活中,我们拿起一根绳子的一端进行一次抖动,就可以看见一个波形在绳子上传播,如果连续不断地进行周期性上下抖动,就形成了绳波。

  把绳分成许多小部分,每一小部分都看成一个质点,相邻两个质点间,有弹力的相互作用。第一个质点在外力作用下振动后,就会带动第二个质点振动,只是质点二的振动比前者落后。这样,前一个质点的振动带动后一个质点的振动,依次带动下去,振动也就发生区域向远处的传播,从而形成了绳波。如果在绳子上任取一点系上红布条,我们还可以发现,红布条只是在上下振动,并没有随波前进[1]。

  由此,我们可以发现,介质中的每个质点,在波传播时,都只做简谐振动(可以是上下,也可以是左右),机械波可以看成是一种运动形式的传播,质点本身不会沿着波的传播方向移动。

  对质点运动方向的判定有很多方法,比如对比前一个质点的运动;还可以用"上坡下,下坡上"进行判定,即沿着波的传播方向,向上远离平衡位置的质点向下运动,向下远离平衡位置的质点向上运动。

  机械波传播的本质

  在机械波传播的过程中,介质里本来相对静止的质点,随着机械波的传播而发生振动,这表明这些质点获得了能量,这个能量是从波源通过前面的质点依次传来的。所以,机械波传播的实质是能量的传播,这种能量可以很小,也可以很大,海洋的潮汐能甚至可以用来发电,这是维持机械波(水波)传播的能量转化成了电能。

  机械波

  机械振动在介质中的传播称为机械波。机械波与电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波,例如光波,可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的许多物理性质,如:折射、反射等是一致的,描述它们的物理量也是相同的。常见的机械波有:水波、声波、地震波。

  高三物理知识点总结5

  力和物体的平衡

  1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。

  2.重力

  (1)重力是由于地球对物体的吸引而产生的.

  [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.

  但在地球表面附近,可以认为重力近似等于万有引力

  (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g

  (3)重力的方向:竖直向下(不一定指向地心)。

  (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.

  3.弹力

  (1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.

  (2)产生条件:①直接接触;②有弹性形变.

  (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。在点面接触的情况,垂直于面;

  在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.

  ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.

  ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.

  (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。弹簧弹力可由胡克定律来求解.

  胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.

  4.摩擦力

  (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.

  (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.

  (3)判断静摩擦力方向的方法:

  ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.

  ②平衡法:根据二力平衡条件可以判断静摩擦力的方向.

  (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.

  ①滑动摩擦力大小:利用公式f=μF N 进行计算,其中FN 是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.

  高三物理知识点总结6

  向心力是根据力的作用效果命名的。向心力可能是弹力、摩擦力或重力提供,也可能是几个力的合力,还可能是某个力的分力提供。

  匀速圆周运动的速率不变,而速度方向时刻在变化,只改变速度方向的力叫做向心力。

  向心力最显著的特点是与速度方向垂直,只改变速度方向,不改变速度大小。

  作匀速圆周运动的物体,由于速度大小不变,速度方向不断改变,合力一定与速度方向垂直,且合力指向轨迹弯曲一侧,正好指向圆心,所以,将改变速度方向的力称为向心力。

  作匀速圆周运动的质点,合外力提供向心力;作非匀速圆周运动的物体来讲,一般将其所受的力沿着运动方向和与运动垂直的方向进行分解:沿运动方向的力(称为切向力)是改变速度大小;沿与运动方向垂直的力(称为法向力)是改变速度的方向。

  一、向心力

  1、向心力是改变物体运动方向,产生向心加速度的原因。

  2、向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向。

  3、根据牛顿运动定律,向心力与向心加速度的因果关系是,两者方向恒一致:总是与速度垂直、沿半径指向圆心。

  4、对于匀速圆周运动,物体所受合外力全部作为向心力,故做匀速圆周运动的物体所受合外力应是:大小不变、方向始终与速度方向垂直。

  二、向心力公式

  1、由公式a=ω2r与a=v2/r可知,在角速度一定的条件下,质点的向心加速度与半径成正比;在线速度一定的条件下,质点的向心加速度与半径成反比。

  2、做匀速圆周运动的物体所受合外力全部作为向心力,故物体所受合外力应大小不变、方向始终与速度方向垂直;合外力只改变速度的方向,不改变速度 的大小.根据公式,倘若物体所受合外力F大于在某圆轨道运动所需向心力,物体将速率不变地运动到半径减小的新圆轨道里(在那里,物体的角速度将增大),使 物体所受合外力恰等于该轨道上所需向心力,可见物体在此时会做靠近圆心的运动;反之,倘若物体所受合外力小于在某圆轨道运动所需向心力,“向心力不足”, 物体运动的轨道半径将增大,因而逐渐远离圆心.如果合外力突然消失,物体将沿切线方向飞出,这就是离心运动。

  三、用向心力公式解决实际问题

  根据公式求解圆周运动的动力学问题时应做到四确定:

  1、确定圆心与圆轨迹所在平面;

  2、确定向心力来源;

  3、以指向圆心方向为正,确定参与构成向心力的各分力的正、负;

  4、确定满足牛顿定律的动力学方程;

  做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:Fn=man在列方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要的向心力(可选用等各种形式)。

  高三物理知识点总结7

  一、电流:串联电路中电流强度处处相等:I=I1=I2=I3。

  二、电压:串联电路两端的总电压等于各串联导体两端的电压之和。

  U=U1+U2+U3。

  三、电阻:串联电路的总电阻等于各串联导体的电阻之和。

  R=R1+R2+R3。

  四、分压原理:串联电路中的电阻起分压作用,电压的分配与电阻成正比。

  U1∶U2∶U3=IR1∶IR2∶IR3=R1∶R2∶R3

  五、电功率、电功:串联电路中的电功率、电功与电阻成正比。

  P1∶P2∶P3=I2R1∶I2R2∶I2R3=R1∶R2∶R3

  W1∶W2∶W3=I2R1t∶I2R2t∶I2R3t=R1∶R2∶R3

  (1)电路的总电流等于流过各电阻的分电流之和。

  (2)电路的总电压等于各电阻两端的电压。

  (3)电路总电阻的倒数等于各电阻倒数之和。

  (4) 电路中流过各电阻的电流与电阻的阻值成反比,即阻值大的电阻流过的电流小,阻值小的电阻流过的电流大,这种关系称为分流关系。

  (5)电路中各个电阻消耗的功率与阻值成反比,表明阻值大的电阻消耗的功率少,阻值小的电阻消耗的功率多。

  (6)电路中消耗的总功率等于各电阻消耗功率之和。

  高三物理知识点总结8

  摩擦力

  (1)产生的条件:

  1、相互接触的物体间存在压力;2、接触面不光滑;

  3、接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可。

  (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反。

  (3)判断静摩擦力方向的方法:

  1、假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同。然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向。

  2、平衡法:根据二力平衡条件可以判断静摩擦力的方向。

  (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解。

  1、滑动摩擦力大小:利用公式f=μFN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关。或者根据物体的运动状态,利用平衡条件或牛顿定律来求解。

  2、静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解。

  力学知识点

  1、力:

  力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。

  按照力命名的依据不同,可以把力分为按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。

  力的作用效果:形变;改变运动状态。

  2、重力:

  由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定

  3、弹力:

  (1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。

  (2)条件:接触;形变。但物体的形变不能超过弹性限度。

  (3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)

  (4)大小:弹簧的弹力大小由F=kx计算,一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定。

  4、摩擦力:

  (1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可。

  (2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反。但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度。

  高中物理知识点总结:力学部分力学的基本规律之:匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;牛顿运动定律(牛顿第一、第二、第三定律);力学的基本规律之:万有引力定律;天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);力学的基本规律之:动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的量度)力学的基本规律之:重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);

  功能原理(非重力做功与物体机械能变化之间的关系);力学的基本规律之:机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用。

  1、电路的组成:电源、开关、用电器、导线。

  2、电路的三种状态:通路、断路、短路。

  3、电流有分支的是并联,电流只有一条通路的是串联。

  4、在家庭电路中,用电器都是并联的。

  5、电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。

  6、电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。

  7、电压是形成电流的原因。

  8、安全电压应低于24V。

  9、金属导体的电阻随温度的升高而增大。

  10、影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

  11、滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

  12、利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

  13、伏安法测电阻原理:R=伏安法测电功率原理:P=UI

  14、串联电路中:电压、电功和电功率与电阻成正比

  15、并联电路中:电流、电功和电功率与电阻成反比16。"220V、100W"的灯泡比"220V、40W"的灯泡电阻小,灯丝粗。

  高三物理知识点总结9

  1.分子动理论

  (1)物质是由大量分子组成的分子直径的数量级一般是10-10m。

  (2)分子永不停息地做无规则热运动。

  ①扩散现象:不同的物质互相接触时,可以彼此进入对方中去。温度越高,扩散越快。②布朗运动:在显微镜下看到的悬浮在液体(或气体)中微小颗粒的无规则运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规则运动的宏观反映。颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

  (3)分子间存在着相互作用力

  分子间同时存在着引力和斥力,引力和斥力都随分子间距离增大而减小,但斥力的变化比引力的变化快,实际表现出来的是引力和斥力的合力。

  2.物体的内能

  (1)分子动能:做热运动的分子具有动能,在热现象的研究中,单个分子的动能是无研究意义的,重要的是分子热运动的平均动能。温度是物体分子热运动的平均动能的标志。

  (2)分子势能:分子间具有由它们的相对位置决定的势能,叫做分子势能。分子势能随着物体的体积变化而变化。分子间的作用表现为引力时,分子势能随着分子间的距离增大而增大。分子间的作用表现为斥力时,分子势能随着分子间距离增大而减小。对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。

  (3)物体的内能:物体里所有的分子的动能和势能的总和叫做物体的内能。任何物体都有内能,物体的内能跟物体的温度和体积有关。

  (4)物体的内能和机械能有着本质的区别。物体具有内能的同时可以具有机械能,也可以不具有机械能。

  3.改变内能的两种方式

  (1)做功:其本质是其他形式的能和内能之间的相互转化。(2)热传递:其本质是物体间内能的转移。

  (3)做功和热传递在改变物体的内能上是等效的,但有本质的区别。

  4.热力学第一定律

  (1)内容:物体内能的增量(ΔU)等于外界对物体做的功(W)和物体吸收的热量(Q)的总和。

  (2)表达式:W+Q=ΔU

  (3)符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值;物体吸收热量,Q取正值,物体放出热量,Q取负值;物体内能增加,ΔU取正值,物体内能减少,ΔU取负值。

  5.热力学第二定律

  (1)热传导的方向性

  热传递的过程是有方向性的,热量会自发地从高温物体传给低温物体,而不会自发地从低温物体传给高温物体。

  (2)热力学第二定律的两种常见表述

  ①不可能使热量由低温物体传递到高温物体,而不引起其他变化。

  ②不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。

  (3)永动机不可能制成

  ①第一类永动机不可能制成:不消耗任何能量,却可以源源不断地对外做功,这种机器被称为第一类永动机,这种永动机是不可能制造成的,它违背了能量守恒定律。

  ②第二类永动机不可能制成:没有冷凝器,只有单一热源,并从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化的热机叫做第二类永动机。第二类永动机不可能制成,它虽然不违背能量守恒定律,但违背了热力学第二定律。

  6.气体的状态参量

  (1)温度:宏观上表示物体的冷热程度,微观上是分子平均动能的标志。两种温标的换算关系:T=(t+273)K。

  绝对零度为-273.15℃,它是低温的极限,只能接近不能达到。

  (2)气体的体积:气体的体积不是气体分子自身体积的总和,而是指大量气体分子所能达到的整个空间的体积。封闭在容器内的气体,其体积等于容器的容积。

  (3)气体的压强:气体作用在器壁单位面积上的压力。数值上等于单位时间内器壁单位面积上受到气体分子的总冲量。

  ①产生原因:大量气体分子无规则运动碰撞器壁,形成对器壁各处均匀的持续的压力。

  ②决定因素:一定气体的压强大小,微观上决定于分子的运动速率和分子密度;宏观上决定于气体的温度和体积。

  (4)对于一定质量的理想气体,PV/T=恒量

  7.气体分子运动的特点

  (1)气体分子间有很大的空隙。气体分子之间的距离大约是分子直径的10倍。

  (2)气体分子之间的作用力十分微弱。在处理某些问题时,可以把气体分子看作没有相互作用的质点。

  (3)气体分子运动的速率很大,常温下大多数气体分子的速率都达到数百米每秒。离这个数值越远,分子数越少,表现出“中间多,两头少”的统计分布规律。

  高三物理知识点总结10

  1.磁场

  (1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。永磁体和电流都能在空间产生磁场。变化的电场也能产生磁场。

  (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。

  (3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用。

  (4)安培分子电流假说——-在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。

  (5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。

  2.磁感线

  (1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。

  (2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。

  (3)几种典型磁场的磁感线的分布:

  ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。

  ②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场。

  ③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱。

  ④匀强磁场:磁感应强度的大小处处相等、方向处处相同。匀强磁场中的磁感线是分布均匀、方向相同的平行直线。

  3.磁感应强度

  (1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL。单位T,1T=1N/(A·m)。

  (2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。

  (3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。

  (4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。

  4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:

  (1)地磁场的N极在地球南极附近,S极在地球北极附近。

  (2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下。

  (3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北。

  5★.安培力

  (1)安培力大小F=BIL。式中F、B、I要两两垂直,L是有效长度。若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度。

  (2)安培力的方向由左手定则判定。

  (3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零。

  6.★洛伦兹力

  (1)洛伦兹力的大小f=qvB,条件:v⊥B。当v∥B时,f=0。

  (2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功。

  (3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现。所以洛伦兹力的方向与安培力的方向一样也由左手定则判定。

  (4)在磁场中静止的电荷不受洛伦兹力作用。

  7.★★★带电粒子在磁场中的运动规律

  在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),

  (1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动。

  (2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动。①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB

  8.带电粒子在复合场中运动

  (1)带电粒子在复合场中做直线运动

  ①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解。

  ②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解。

  (2)带电粒子在复合场中做曲线运动

  ①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解。

  ②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解。

  ③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最多”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。

  物理学是研究自然界中物理现象的科学。这些现象包括力现象,声音现象,热现象,电和磁现象,光现象,原子和原子核的运动变化等现象。学习物理的主要任务就要研究这些现象,找出其中的规律,了解产生这些现象的原因,并使同学们知道和掌握,以更好地为生产和生活服务。我们知道,我们周围的世界就是由物质构成的,许多生产和生活现象都是物理现象,要学好物理,就要认真观察周围存在的各种物理现象。

  高三物理知识点总结11

  1.若三个力大小相等方向互成120°,则其合力为零。

  2.几个互不平行的力作用在物体上,使物体处于平衡状态,则其中一部分力的合力必与其余部分力的合力等大反向。

  3.在匀变速直线运动中,任意两个连续相等的时间内的位移之差都相等,即Δx=aT2(可判断物体是否做匀变速直线运动),推广:xm-xn=(m-n) aT2。

  4.在匀变速直线运动中,任意过程的平均速度等于该过程中点时刻的瞬时速度。即vt/2=v平均。

  5.对于初速度为零的匀加速直线运动

  (1)T末、2T末、3T末、…的瞬时速度之比为:v1:v2:v3:…:vn=1:2:3:…:n。

  (2)T内、2T内、3T内、…的位移之比为:x1:x2:x3:…:xn=12:22:32:…:n2。

  (3)第一个T内、第二个T内、第三个T内、…的位移之比为:xⅠ:xⅡ:xⅢ:…:xn=1:3:5:…:(2n-1)。

  (4)通过连续相等的位移所用的时间之比:t1:t2:t3:…:tn=1:(21/2-1):(31/2-21/2):…:[n1/2-(n-1)1/2]。

  6.物体做匀减速直线运动,末速度为零时,可以等效为初速度为零的反向的匀加速直线运动。

  7.对于加速度恒定的匀减速直线运动对应的正向过程和反向过程的时间相等,对应的速度大小相等(如竖直上抛运动)

  8.质量是惯性大小的唯一量度。惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。

  9.做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等,方向与加速度方向一致(即Δv=at)。

  10.做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。

  11.物体做匀速圆周运动的条件是合外力大小恒定且方向始终指向圆心,或与速度方向始终垂直。

  12.做匀速圆周运动的物体,在所受到的合外力突然消失时,物体将沿圆周的切线方向飞出做匀速直线运动;在所提供的向心力大于所需要的向心力时,物体将做向心运动;在所提供的向心力小于所需要的向心力时,物体将做离心运动。

  13.开普勒第一定律的内容是所有的行星围绕太阳运动的轨道都是椭圆,太阳在椭圆轨道的一个焦点上。开普勒第三定律的内容是所有行星的半长轴的三次方跟公转周期的平方的比值都相等,即R3/ T2=k。

  14.地球质量为M,半径为R,万有引力常量为G,地球表面的重力加速度为g,则其间存在的一个常用的关系是。(类比其他星球也适用)

  15.第一宇宙速度(近地卫星的环绕速度)的表达式v1=(GM/R)1/2=(gR) 1/2,大小为7.9m/s,它是发射卫星的最小速度,也是地球卫星的最大环绕速度。随着卫星的高度h的增加,v减小,ω减小,a减小,T增加。

  16.第二宇宙速度:v2=11.2km/s,这是使物体脱离地球引力束缚的最小发射速度。

  17.第三宇宙速度:v3=16.7km/s,这是使物体脱离太阳引力束缚的最小发射速度。

  18.对于太空中的双星,其轨道半径与自身的质量成反比,其环绕速度与自身的质量成反比。

  19.做功的过程就是能量转化的过程,做了多少功,就表示有多少能量发生了转化,所以说功是能量转化的量度,以此解题就是利用功能关系解题。

  20.滑动摩擦力,空气阻力等做的功等于力和路程的乘积。

  21.静摩擦力做功的特点:

  (1)静摩擦力可以做正功,可以做负功也可以不做功。

  (2)在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力只起到传递机械能的作用),而没有机械能与其他能量形式的相互转化。

  (3)相互摩擦的系统内,一对静摩擦力所做的功的总和等于零。

  22.滑动摩擦力做功的特点:

  (1)滑动摩擦力可以对物体做正功,可以做负功也可以不做功。

  (2)一对滑动摩擦力做功的过程中,能量的分配有两个方面:一是相互摩擦的物体之间的机械能的转移;二是系统机械能转化为内能;转化为内能的量等于滑动摩擦力与相对路程的乘积,即Q=f. Δs相对。

  23.若一条直线上有三个点电荷,因相互作用而平衡,其电性及电荷量的定性分布为“两同夹一异,两大夹一小”。

  24.匀强电场中,任意两点连线中点的电势等于这两点的电势的平均值。在任意方向上电势差与距离成正比。

  25.正电荷在电势越高的地方,电势能越大,负电荷在电势越高的地方,电势能越小。

  26.电容器充电后和电源断开,仅改变板间的距离时,场强不变。

  27.两电流相互平行时无转动趋势,同向电流相互吸引,异向电流相互排斥;两电流不平行时,有转动到相互平行且电流方向相同的趋势。

  28.带电粒子在磁场中仅受洛伦兹力时做圆周运动的周期与粒子的速率、半径无关,仅与粒子的质量、电荷和磁感应强度有关。

  29.带电粒子在有界磁场中做圆周运动:

  (1)速度偏转角等于扫过的圆心角。

  (2)几个出射方向:

  ①粒子从某一直线边界射入磁场后又从该边界飞出时,速度与边界的夹角相等。

  ②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出——对称性。

  ③刚好穿出磁场边界的条件是带电粒子在磁场中的轨迹与边界相切。

  (3)运动的时间:轨迹对应的圆心角越大,带电粒子在磁场中的运动时间就越长,与粒子速度的大小无关。[t=θT/(2π)= θm/(qB)]

  30.速度选择器模型:带电粒子以速度v射入正交的电场和磁场区域时,当电场力和磁场力方向相反且满足v=E/B时,带电粒子做匀速直线运动(被选择)与带电粒子的带电荷量大小、正负无关,但改变v、B、E中的任意一个量时,粒子将发生偏转。

  31.回旋加速器

  (1)为了使粒子在加速器中不断被加速,加速电场的周期必须等于回旋周期。

  (2)粒子做匀速圆周运动的最大半径等于D形盒的半径。

  (3)在粒子的质量、电荷量确定的情况下,粒子所能达到的最大动能只与D形盒的半径和磁感应强度有关,与加速器的电压无关(电压只决定了回旋次数)。

  (4)将带电粒子在两盒之间的运动首尾相连起来是一个初速度为零的匀加速直线运动,带电粒子每经过电场加速一次,回旋半径就增大一次,故各次半径之比为:1:21/2:31/2:…:n1/2。

  32.在没有外界轨道约束的情况下,带电粒子在复合场中三个场力(电场力、洛伦磁力、重力)作用下的直线运动必为匀速直线运动;若为匀速圆周运动则必有电场力和重力等大、反向。

  33.在闭合电路中,当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小)。

  34.滑动变阻器分压电路中,总电阻变化情况与滑动变阻器串联段电阻变化情况相同。

  35.若两并联支路的电阻之和保持不变,则当两支路电阻相等时,并联总电阻最大;当两支路电阻相差最大时,并联总电阻最小。

  36.电源的输出功率随外电阻变化,当内外电阻相等时,电源的输出功率最大,且最大值Pm=E2/(4r)。

  37.导体棒围绕棒的一端在垂直磁场的平面内做匀速圆周运动而切割磁感线产生的电动势E=BL2ω/2。

  38.对由n匝线圈构成的闭合电路,由于磁通量变化而通过导体某一横截面的电荷量q=nΔΦ/R。

  39.在变加速运动中,当物体的加速度为零时,物体的速度达到最大或最小——常用于导体棒的动态分析。

  40.安培力做多少正功,就有多少电能转化为其他形式的能量;安培力做多少负功,就有多少其他形式的能量转化为电能,这些电能在通过纯电阻电路时,又会通过电流做功将电能转化为内能。

  41.在Φ-t图象(或回路面积不变时的B-t图象)中,图线的斜率既可以反映电动势的大小,又可以反映电源的正负极。

  42.交流电的产生:计算感应电动势的最大值用Em=nBSω;计算某一段时间Δt内的感应电动势的平均值用E平均=nΔΦ/Δt,而E平均不等于对应时间段内初、末位置的算术平均值。即E平均≠E1+E2/2,注意不要漏掉n。

  43.只有正弦交流电,物理量的最大值和有效值才存在21/2倍的关系。对于其他的交流电,需根据电流的热效应来确定有效值。

  44.回复力与加速度的大小始终与位移的大小成正比,方向总是与位移方向相反,始终指向平衡位置。

  45.做简谐运动的物体的振动是变速直线运动,因此在一个周期内,物体运动的路程是4A,半个周期内,物体的路程是2A,但在四分之一个周期内运动的路程不一定是A。

  46.每一个质点的起振方向都与波源的起振方向相同。

  47.对于干涉现象

  (1)加强区始终加强,减弱区始终减弱。

  (2)加强区的振幅A=A1+A2,减弱区的振幅A=|A1-A2|。

  48.相距半波长的奇数倍的两质点,振动情况完全相反;相距半波长的偶数倍的两质点,振动情况完全相同。

  49.同一质点,经过Δt =nT(n=0、1、2…),振动状态完全相同,经过Δt =nT+T/2(n=0、1、2…),振动状态完全相反。

  50.小孔成像是倒立的实像,像的大小由光屏到小孔的距离而定。

  51.根据反射定律,平面镜转过一个微小的角度α,法线也随之转动α,反射光则转过2α。

  52.光由真空射向三棱镜后,光线一定向棱镜的底面偏折,折射率越大,偏折程度越大。通过三棱镜看物体,看到的是物体的虚像,而且虚像向棱镜的顶角偏移,如果把棱镜放在光密介质中,情况则相反。

  53.光线通过平行玻璃砖后,不改变光线行进的方向及光束的性质,但会使光线发生侧移,侧移量的大小跟入射角、折射率和玻璃砖的厚度有关。

  54.光的颜色是由光的频率决定的,光在介质中的折射率也与光的频率有关,频率越大的光折射率越大。

  55.用单色光做双缝干涉实验时,当两列光波到达某点的路程差为半波长的偶数倍时,该处的光互相加强,出现亮条纹;当到达某点的路程差为半波长的奇数倍时,该处的光互相减弱,出现暗条纹。

  56.电磁波在介质中的传播速度跟介质和频率有关;而机械波在介质中的传播速度只跟介质有关。

  57.质子和中子统称为核子,相邻的任何核子间都存着核力,核力为短程力。距离较远时,核力为零。

  58.半衰期的大小由放射性元素的原子核内部本身的因素决定,跟物体所处的物理状态或化学状态无关。

  59.使原子发生能级跃迁时,入射的若是光子,光子的能量必须等于两个定态的能级差或超过电离能;入射的若是电子,电子的能量必须大于或等于两个定态的能级差。

  60.原子在某一定态下的能量值为En=E1/n2,该能量包括电子绕核运动的动能和电子与原子核组成的系统的电势能。

  61.动量的变化量的方向与速度变化量的方向相同,与合外力的冲量方向相同,在合外力恒定的情况下,物体动量的变化量方向与物体所受合外力的方向相同,与物体加速度的方向相同。

  62. F合Δt=ΔP→F合=ΔP/Δt这是牛顿第二定律的另一种表示形式,表述为物体所受的合外力等于物体动量的变化率。

  63.碰撞问题遵循三个原则:

  ①总动量守恒;

  ②总动能不增加;

  ③合理性(保证碰撞的发生,又保证碰撞后不再发生碰撞)。

  64.完全非弹性碰撞(碰撞后连成一个整体)中,动量守恒,机械能不守恒,且机械能损失最大。

  65.爆炸的特点是持续时间短,内力远大于外力,系统的动量守恒

  高三物理知识点总结12

  电场基本规律

  1、库仑定律

  (1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。

  (2)表达式:k=9.0×109N·m2/C2——静电力常量

  (3)适用条件:真空中静止的点电荷。

  2、电荷守恒定律

  电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。

  (1)三种带电方式:摩擦起电,感应起电,接触起电。

  (2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=1.6×10-19C——密立根测得e的值。

  2电场能的性质

  1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。

  2、电势φ

  (1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。 

  (2)定义式:φ——单位:伏(V)——带正负号计算

  (3)特点:

  1、电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。

  2、电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。

  3、电势的大小由电场本身决定,与Ep和q无关。

  4、电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。

  (4)电势高低的判断方法

  1、根据电场线判断:沿着电场线电势降低。φA>φB

  2、根据电势能判断:

  正电荷:电势能大,电势高;电势能小,电势低。

  负电荷:电势能大,电势低;电势能小,电势高。

  结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。

  3电势能Ep

  (1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。

  (2)定义式:——带正负号计算

  (3)特点:

  1、电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。

  2、电势能的变化量△Ep与零势能面的选择无关。

  4电势差UAB

  (1)定义:电场中两点间的电势之差。也叫电压。

  (2)定义式:UAB=φA-φB

  (3)特点:

  1、电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBA<0。

  2、单位:伏

  3、电场中两点的电势差是确定的,与零势面的选择无关

  4、U=Ed匀强电场中两点间的电势差计算公式。——电势差与电场强度之间的关系。

  5静电平衡状态

  (1)定义:导体内不再有电荷定向移动的稳定状态

  (2)特点:

  1、处于静电平衡状态的导体,内部场强处处为零。

  2、感应电荷在导体内任何位置产生的电场都等于外电场在该处场强的大小相等,方向相反。

  3、处于静电平衡状态的整个导体是个等势体,导体表面是个等势面。

  4、电荷只分布在导体的外表面,在导体表面的分布与导体表面的弯曲程度有关,越弯曲,电荷分布越多。

  6电场力做功WAB

  (1)电场力做功的特点:电场力做功与路径无关,只与初末位置有关,即与初末位置的电势差有关。

  (2)表达式:WAB=UABq—带正负号计算(适用于任何电场)WAB=Eqd—d沿电场方向的距离。——匀强电场

  (3)电场力做功与电势能的关系WAB=-△Ep=EpA-EPB

  结论:电场力做正功,电势能减少电场力做负功,电势能增加

  7等势面

  (1)定义:电势相等的点构成的面。

  (2)特点:

  等势面上各点电势相等,在等势面上移动电荷,电场力不做功。

  等势面与电场线垂直

  两等势面不相交

  等势面的密集程度表示场强的大小:疏弱密强。

  画等势面时,相邻等势面间的电势差相等。

  (3)判断电场线上两点间的电势差的大小:靠近场源(场强大)的两间的电势差大于远离场源(场强小)相等距离两点间的电势差。

  高三物理知识点总结13

  1.两种电荷、电荷守恒定律、元电荷:e=1.6×10-19C

  2.库仑定律:F=kQ1Q2/r2 (在真空中)

  3.电场强度:E=F/q(定义式、计算式)

  4.真空点(源)电荷形成的电场E=kQ/r2

  5.匀强电场的场强E=UAB/d

  6.电场力:F=qE

  7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

  8.电场力做功:WAB=qUAB=Eqd

  9.电势能:EA=qφA

  10.电势能的变化ΔEAB=EB-EA

  11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

  12.电容C=Q/U(定义式,计算式)

  13.平行板电容器的电容C=εrxS/4πkd=εS/d

  14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2 /2,Vt=(2qU/m)1/2

  15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2 /2,a=F/m=qE/m

  高三物理知识点总结14

  力是物体间的相互作用

  1.力的国际单位是牛顿,用N表示;

  2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;

  3.力的示意图:用一个带箭头的线段表示力的方向;

  4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;

  重力:由于地球对物体的吸引而使物体受到的力;

  a.重力不是万有引力而是万有引力的一个分力;

  b.重力的方向总是竖直向下的(垂直于水平面向下)

  c.测量重力的仪器是弹簧秤;

  d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;

  弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;

  a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;

  b.弹力包括:支持力、压力、推力、拉力等等;

  c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;

  d.在弹性限度内弹力跟形变量成正比;F=Kx

  摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;

  a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;

  b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;

  c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;

  d.静摩擦力的大小等于使物体发生相对运动趋势的外力;

  合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;

  a.合力与分力的作用效果相同;

  b.合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;

  c.合力大于或等于二分力之差,小于或等于二分力之和;

  d.分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);

  矢量

  矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量)

  标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量)

  直线运动

  物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;

  (1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

  (2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;

  (3)处于平衡状态的物体在任意两个相互垂直方向的合力为零;

  机械运动

  机械运动:一物体相对其它物体的位置变化。

  1.参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);

  2.质点:只考虑物体的质量、不考虑其大小、形状的物体;

  (1)质点是一理想化模型;

  (2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;

  如:研究地球绕太阳运动,火车从北京到上海;

  3.时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

  例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

  4.位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

  (1)位移为零、路程不一定为零;路程为零,位移一定为零;

  (2)只有当质点作单向直线运动时,质点的位移才等于路程;

  (3)位移的国际单位是米,用m表示

  5.位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

  (1)匀速直线运动的位移图像是一条与横轴平行的直线;

  (2)匀变速直线运动的位移图像是一条倾斜直线;

  (3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;

  6.速度是表示质点运动快慢的物理量

  (1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;

  (2)速率只表示速度的大小,是标量;

  7.加速度:是描述物体速度变化快慢的物理量;

  (1)加速度的定义式:a=vt-v0/t

  (2)加速度的大小与物体速度大小无关;

  (3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;

  (4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

  (5)加速度是矢量,加速度的方向和速度变化方向相同;

  (6)加速度的国际单位是m/s2

  匀变速直线运动

  1.速度:匀变速直线运动中速度和时间的关系:vt=v0+at

  注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

  (1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

  (2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

  2.位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2

  注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

  3.推论:2as=vt2-v02

  4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2

  5.初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比;

  自由落体运动

  只在重力作用下从高处静止下落的物体所作的运动。

  1.位移公式:h=1/2gt2

  2.速度公式:vt=gt

  3.推论:2gh=vt2

  牛顿定律

  1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

  a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;

  b.力是该变物体速度的原因;

  c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

  d力是产生加速度的原因;

  2.惯性:物体保持匀速直线运动或静止状态的性质叫惯性。

  a.一切物体都有惯性;

  b.惯性的大小由物体的质量决定;

  c.惯性是描述物体运动状态改变难易的物理量;

  3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

  a.数学表达式:a=F合/m;

  b.加速度随力的产生而产生、变化而变化、消失而消失;

  c.当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。

  d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;

  4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

  a.作用力和反作用力同时产生、同时变化、同时消失;

  b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;

  曲线运动·万有引力

  曲线运动

  质点的运动轨迹是曲线的运动

  1.曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向

  2.质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折;

  3.曲线运动的特点

  曲线运动一定是变速运动;

  曲线运动的加速度(合外力)与其速度方向不在同一条直线上;

  4.力的作用

  力的方向与运动方向一致时,力改变速度的大小;

  力的方向与运动方向垂直时,力改变速度的方向;

  力的方向与速度方向既不垂直,又不平行时,力既搞变速度大小又改变速度的方向;

  运动的合成与分解

  1.判断和运动的方法:物体实际所作的运动是合运动

  2.合运动与分运动的等时性:合运动与各分运动所用时间始终相等;

  3.合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;

  平抛运动

  被水平抛出的物体在在重力作用下所作的运动叫平抛运动。

  1.平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;

  2.水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;

  3.求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;

  匀速圆周运动

  质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动。

  1.线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向;

  2.角速度的大小等于质点转过的角度除以所用时间:ω=Φ/t

  3.角速度、线速度、周期、频率间的关系:

  (1)v=2πr/T;

  (2)ω=2π/T;

  (3)V=ωr;

  (4)f=1/T;

  4.向心力:

  (1)定义:做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。

  (2)方向:总是指向圆心,与速度方向垂直。

  (3)特点:①只改变速度方向,不改变速度大小

  ②是根据作用效果命名的。

  (4)计算公式:F向=mv2/r=mω2r

  5.向心加速度:a向=v2/r=ω2r

  开普勒三定律

  1.开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;

  说明:在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;

  2.开普勒第三定律:所有行星与太阳的连线在相同的时间内扫过的面积相等;

  3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;

  公式:R3/T2=K;

  说明:

  (1)R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关;

  (2)当把行星的轨迹视为圆时,R表示愿的半径;

  (3)该公式亦适用与其它天体,如绕地球运动的卫星;

  万有引力定律

  自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比。

  1.计算公式

  F:两个物体之间的引力

  G:万有引力常量

  M1:物体1的质量

  M2:物体2的质量

  R:两个物体之间的距离

  依照国际单位制,F的单位为牛顿(N),m1和m2的单位为千克(kg),r的单位为米(m),常数G近似地等于

  6.67×10^-11N·m^2/kg^2(牛顿平方米每二次方千克)。

  2.解决天体运动问题的思路:

  (1)应用万有引力等于向心力;应用匀速圆周运动的线速度、周期公式;

  (2)应用在地球表面的物体万有引力等于重力;

  (3)如果要求密度,则用:m=ρV,V=4πR3/3

  机械能

  功

  功等于力和物体沿力的方向的位移的乘积;

  1.计算公式:w=Fs;

  2.推论:w=Fscosθ,θ为力和位移间的夹角;

  3.功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功;

  功率

  功率是表示物体做功快慢的物理量。

  1.求平均功率:P=W/t;

  2.求瞬时功率:p=Fv,当v是平均速度时,可求平均功率;

  3.功、功率是标量;

  功和能之间的关系

  功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化;

  动能定理

  合外力做的功等于物体动能的变化。

  1.数学表达式:w合=mvt2/2-mv02/2

  2.适用范围:既可求恒力的功亦可求变力的功;

  3.应用动能定理解题的优点:只考虑物体的初、末态,不管其中间的运动过程;

  4.应用动能定理解题的步骤:

  (1)对物体进行正确的受力分析,求出合外力及其做的功;

  (2)确定物体的初态和末态,表示出初、末态的动能;

  (3)应用动能定理建立方程、求解

  重力势能

  物体的重力势能等于物体的重量和它的速度的乘积。

  1.重力势能用EP来表示;

  2.重力势能的数学表达式:EP=mgh;

  3.重力势能是标量,其国际单位是焦耳;

  4.重力势能具有相对性:其大小和所选参考系有关;

  5.重力做功与重力势能间的关系

  (1)物体被举高,重力做负功,重力势能增加;

  (2)物体下落,重力做正功,重力势能减小;

  (3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关

  机械能守恒定律

  在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。

  1.机械能守恒定律的适用条件:只有重力或弹簧弹力做功。

  2.机械能守恒定律的数学表达式:

  3.在只有重力或弹簧弹力做功时,物体的机械能处处相等;

  4.应用机械能守恒定律的解题思路

  (1)确定研究对象,和研究过程;

  (2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律;

  (3)恰当选择参考平面,表示出初、末状态的机械能;

  (4)应用机械能守恒定律,立方程、求解;

  高三物理知识点总结15

  高中物理的确难,实用口诀能帮忙。物理公式、规律主要通过理解和运用来记忆,本口诀也要通过理解,发挥韵调特点,能对高中物理重要知识记忆起辅助作用。

  一、运动的描述

  1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢s比t,a用δv与t比。

  2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,δs等at平方。

  3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。

  二、力

  1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

  2.分析受力要仔细,定量计算七种力;重力有无看

  提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。

  3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最大最小间,多力合力合另边。

  多力问题状态揭,正交分解来解决,三角函数能化解。

  4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。

  三、牛顿运动定律

  1.f等ma,牛顿二定律,产生加速度,原因就是力。

  合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。

  2.n、t等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零

  四、曲线运动、万有引力

  1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。

  2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比r,mrw平方也需,供求平衡不心离。

  3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

  五、机械能与能量

  1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。

  2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。

  3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。

  六、电场

  1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kqq与r平方比。

  2.电荷周围有电场,f比q定义场强。kq比r2点电荷,u比d是匀强电场。

  电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。

  场能性质是电势,场线方向电势降。场力做功是qu,动能定理不能忘。

  4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。

  七、恒定电流

  1.电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。

  正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。

  2.电阻定律三因素,温度不变才得出,控制变量来论述,rl比s等电阻。

  电流做功uit,电热i平方rt。电功率,w比t,电压乘电流也是。

  3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。

  4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。

  路端电压内压降,和就等电动势,除于总阻电流是。

  八、磁场

  1.磁体周围有磁场,n极受力定方向;电流周围有磁场,安培定则定方向。

  2.f比il是场强,φ等bs磁通量,磁通密度φ比s,磁场强度之名异。

  3.bil安培力,相互垂直要注意。

  4.洛仑兹力安培力,力往左甩别忘记。

  九、电磁感应

  1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。

  感应电动势大小,磁通变化率知晓。

  2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。

  3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i向。

  必修和选修物理知识点汇总

  十、交流电

  1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。

  中性面计时是正弦,平行面计时是余弦。

  2.nbsω是最大值,有效值用热量来计算。

  3.变压器供交流用,恒定电流不能用。

  理想变压器,初级ui值,次级ui值,相等是原理。

  电压之比值,正比匝数比;电流之比值,反比匝数比。

  运用变压比,若求某匝数,化为匝伏比,方便地算出。

  远距输电用,升压降流送,否则耗损大,用户后降压。

  十一、气态方程

  研究气体定质量,确定状态找参量。绝对温度用大t,体积就是容积量。

  压强分析封闭物,牛顿定律帮你忙。状态参量要找准,pv比t是恒量。

  十二、热力学定律

  1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。

  正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。

  2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。

  十三、机械振动

  1.简谐振动要牢记,o为起点算位移,回复力的方向指,始终向平衡位置,

  大小正比于位移,平衡位置u大极。

  2.o点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4a路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。

  到质心摆长行,单摆具有等时性。

  3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。

  十四、机械波

  1.左行左坡上,右行右坡上。峰点谷点无方向。

  2.顺着传播方向吧,从谷往峰想上爬,脚底总得往下蹬,上下振动迁不动。

  3.不同时刻的图像,δt四分一或三,质点动向疑惑散,s等vt派用场。

  十五、光学

  1.自行发光是光源,同种均匀直线传。若是遇见障碍物,传播路径要改变。

  反射折射两定律,折射定律是重点。光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。

  2.全反射,要牢记,入射光线在光密。入射角大于临界角,折射光线无处觅。

  十六、物理光学

  1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗

  2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。

  十七、动量

  1.确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。

  2.确定状态找动量,分析过程找冲量,外力冲量若为零,初态末态动量同。

  十八、原子原子核

  1.原子核,中央站,电子分层围它转;向外跃迁为激发,辐射光子向内迁;光子能量hn,能级差值来计算。

  2.原子核,能改变,αβ两衰变。α粒是氦核,电子流是β射线。

  γ光子不单有,伴随衰变而出现。铀核分开是裂变,中子撞击是条件。

  裂变可造原子弹,还可用它来发电。轻核聚合是聚变,温度极高是条件。

  变可以造氢弹,还是太阳能量源;和平利用前景好,可惜至今未实现。

  高三物理知识点总结16

  1、重力

  由于地球的吸引而使物体受到的力叫做重力。物体受到的重力G与物体质量m的关系是G=mg,g称为重力加速度或自由落体加速度,与物体所处位置的高低和纬度有关。重力的方向竖直向下,在南北极或赤道上指向地心。物体各部分受到重力的等效作用点叫做重心,重心位置与物体的形状和质量分布有关。

  2、万有引力

  存在于自然界任何两个物体之间的力。万有引力F与两个物体的质量m1 、m2和它们之间距离r的关系是,G称为引力常量,适用于任何两个物体,其大小通常取。 万有引力的方向在两物体的连线上。

  3、弹力

  发生弹性形变的物体,由于要恢复原状而对与它接触的物体产生的力。弹簧的弹力F与其形变量x之间的关系是F=kx,k称为弹簧的劲度系数,单位为N/m,与弹簧的长短、粗细、材料和横截面积等因素有关。弹力的方向与形变的方向相反。弹簧都有弹性限度,超过弹性限度后,前述力与形变量的关系不再成立。

  4、静摩擦力

  两个相互接触的物体,当它们发生相对运动或具有相对运动的趋势时,在接触面产生阻碍相对运动或相对运动趋势的力叫做摩擦力。当两个物体间只有相对运动的趋势,而没有相对运动,这时的摩擦力叫做静摩擦力。两个物体间的静摩擦力有一个限度,两个物体刚刚开始相对运动时,它们之间的摩擦力称为最大静摩擦力。两个物体间实际发生的静摩擦力F在0和最大静摩擦力Fmax之间。静摩擦力的方向总是沿着接触面,并且跟物体相对运动趋势的方向相反。

  5、滑动摩擦力

  当一个物体在另一个物体表面滑动时,受到另一个物体阻碍它滑动的力。滑动摩擦力的大小跟压力(两个物体表面间的垂直作用力)成正比。滑动摩擦力f与压力FN之间的关系是f=uFN,u称为动摩擦因数,与相互接触的两个物体的材料、接触面的情况有关。滑动摩擦力的方向总是沿着接触面,并且跟物体的相对运动方向相反。

  6、静电力

  静止的点电荷之间的力。静电力F与两个点电荷q1、q2和它们之间的距离r的关系是,k称为静电力常量,其大小为。两个点电荷带同种电荷时,它们之间的作用力为斥力;两个点电荷带异种电荷时,它们之间的作用力为引力。静电力也称库仑力。

  7、电场力

  试探电荷(带电体)在电场中受到的力。电场力F与试探电荷的电荷量q之间的关系是F=Eq,E称为电场强度,大小由电场本身决定,方向与正电荷所受电场力的方向相同,其单位为N/C。

  8、安培力

  通电导线在磁场中受到的力。当直导线与匀强磁场方向垂直时,导线所受安培力F与导线中电流强度I,导线的长度L,磁感应强度B之间的关系是F=BIL。安培力的方向可由左手定则确定。

  9、洛伦兹力

  带电粒子在磁场中运动时受到的力。当粒子运动的方向与磁感应强度方向垂直时,粒子所受的洛伦兹力与粒子的电荷量q,粒子运动的速度v,磁感应强度B之间的关系是F=qvB。安培力的方向可由左手定则确定。安培力是大量带电粒子所受洛伦兹力的宏观表现。

  10、分子力

  存在于分子间的作用力。分子力比较复杂,分子间同时存在着引力和斥力,当分子间距离为r0时,引力与斥力的合力为0,当r>r0时合力表现为引力,r<r0当时合力表现为斥力,分子间的引力和斥力都随分子间距离的增大而减小。< p="“”">

  11、核力

  存在于原子核内核子之间的一种力。核力是强相互作用的一种表现,在原子核尺度内,核力比库仑力大的多;核力是短程力,作用范围在之内。

  总结

  重力的本质是万有引力,是物体和地球之间万有引力的具体化,若不考虑地球自转的影响,地面上的物体所受的重力等于地球对物体的引力。弹力、摩擦力、静电力、电场力、安培力、洛伦兹力的本质是电磁相互作用。核力是一种强相互作用。还有一种基本相互作用称为弱相互作用,弱相互作用与放射现象有关。四种基本相互作用构筑了力的体系。

  高三物理知识点总结17

  功、功率、机械能和能源

  1.做功两要素:力和物体在力的方向上发生位移

  2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)

  3.物体做正功负功问题(将α理解为F与V所成的角,更为简单)

  (1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,

  如小球在水平桌面上滚动,桌面对球的支持力不做功。

  (2)当α<90度时,cosα>0,W>0.这表示力F对物体做正功。

  如人用力推车前进时,人的推力F对车做正功。

  (3)当α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。

  如人用力阻碍车前进时,人的推力F对车做负功。

  一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。

  例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功

  4.动能是标量,只有大小,没有方向。表达式

  5.重力势能是标量,表达式

  (1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。

  (2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。

  6.动能定理:

  W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度

  解答思路:

  ①选取研究对象,明确它的运动过程。

  ②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。

  ③明确物体在过程始末状态的动能和。

  ④列出动能定理的方程。

  7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)

  解题思路:

  ①选取研究对象----物体系或物体

  ②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。

  ③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。

  ④根据机械能守恒定律列方程,进行求解。

  8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负

  9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。

  实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。

  10、能量守恒定律及能量耗散

  高三物理知识点总结18

  重力势能

  1.电势能的概念

  (1)电势能

  电荷在电场中具有的势能。

  (2)电场力做功与电势能变化的关系

  在电场中移动电荷时电场力所做的功在数值上等于电荷电势能的减少量,即WAB=εA-εB。

  ①当电场力做正功时,即WAB>0,则εA>εB,电势能减少,电势能的减少量等于电场力所做的功,即Δε减=WAB。

  ②当电场力做负功时,即WAB<0,则εA<εB,电势能在增加,增加的电势能等于电场力做功的绝对值,即Δε增=εB-εA=-WAB=|WAB|,但仍可以说电势能在减少,只不过电势能的减少量为负值,即ε减=εA-εB=WAB。

  说明:某一物理过程中其物理量的增加量一定是该物理量的末状态值减去其初状态值,减少量一定是初状态值减去末状态值。

  (3)零电势能点

  在电场中规定的任何电荷在该点电势能为零的点。理论研究中通常取无限远点为零电势能点,实际应用中通常取大地为零电势能点。

  说明:①零电势能点的选择具有任意性。

  ②电势能的数值具有相对性。

  ③某一电荷在电场中确定两点间的电势能之差与零电势能点的选取无关。

  2.电势的概念

  (1)定义及定义式

  电场中某点的电荷的电势能跟它的电量比值,叫做这一点的电势。

  (2)电势的单位:伏(V)。

  (3)电势是标量。

  (4)电势是反映电场能的性质的物理量。

  (5)零电势点

  规定的电势能为零的点叫零电势点。理论研究中,通常以无限远点为零电势点,实际研究中,通常取大地为零电势点。

  (6)电势具有相对性

  电势的数值与零电势点的选取有关,零电势点的选取不同,同一点的电势的数值则不同。

  (7)顺着电场线的方向电势越来越低。电场强度的方向是电势降低最快的方向。

  (8)电势能与电势的关系:ε=qU。

  高三物理知识点总结19

  一.时间和时刻:

  ①时刻的定义:时刻是指某一瞬时,是时间轴上的一点,相对于位置、瞬时速度、等状态量,一般说的“2秒末”,“速度2m/s”都是指时刻。

  ②时间的定义:时间是指两个时刻之间的间隔,是时间轴上的一段,通常说的“几秒内”,“第几秒”都是指的时间。

  二.位移和路程:

  ①位移的定义:位移表示质点在空间的位置变化,是矢量。位移用又向线段表示,位移的大小等于又向线段的长度,位移的方向由初始位置指向末位置。

  ②路程的定义:路程是物体在空间运动轨迹的长度,是一个标量。在确定的两点间路程不是确定的,它与物体的具体运动过程有关。

  三.位移与路程的关系:

  位移和路程是在一段时间内发生的,是过程量,两者都和参考系的选取有关系。一般情况下位移的大小并不等于路程的大小。只有当物体做单方向的直线运动是两者才相等。

  1、时刻和时间间隔

  (1)时刻和时间间隔可以在时间轴上表示出来。时间轴上的每一点都表示一个不同的时刻,时间轴上一段线段表示的是一段时间间隔(画出一个时间轴加以说明)。

  (2)在学校实验室里常用秒表,电磁打点计时器或频闪照相的方法测量时间。

  2、路程和位移

  (1)路程:质点实际运动轨迹的长度,它只有大小没有方向,是标量。

  (2)位移:是表示质点位置变动的物理量,有大小和方向,是矢量。它是用一条自初始位置指向末位置的有向线段来表示,位移的大小等于质点始、末位置间的距离,位移的方向由初位置指向末位置,位移只取决于初、末位置,与运动路径无关。

  (3)位移和路程的区别:

  (4)一般来说,位移的大小不等于路程。只有质点做方向不变的无往返的直线运动时位移大小才等于路程。

  3、矢量和标量

  (1)矢量:既有大小、又有方向的物理量。

  (2)标量:只有大小,没有方向的物理量。

  4、直线运动的位置和位移:在直线运动中,两点的位置坐标之差值就表示物体的位移。

  要想提高学习效率,首先要端正自己的学习态度.养成良好学习习惯,做好课前预习是学好物理的前提;主动高效地听课是学好物理的关键;及时整理好学习笔记,课后的练习要到位,多做题才能丰富自己的解题经验.

  高三物理知识点总结20

  第一章运动的描述

  一、基本概念

  1、质点

  2、 参考系

  3、坐标系

  4、时刻和时间间隔

  5、路程:物体运动轨迹的长度

  6、位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。位移的大小小于或等于路程。

  7、速度:

  物理意义:表示物体位置变化的快慢程度。

  分类平均速度:方向与位移方向相同

  瞬时速度:

  与速率的区别和联系速度是矢量,而速率是标量

  平均速度=位移/时间,平均速率=路程/时间

  瞬时速度的大小等于瞬时速率

  8、加速度

  物理意义:表示物体速度变化的快慢程度

  定义:(即等于速度的变化率)

  方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)

  二、运动图象(只研究直线运动)

  1、x—t图象(即位移图象)

  (1)、纵截距表示物体的初始位置。

  (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。

  (3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。

  2、v—t图象(速度图象)

  (1)、纵截距表示物体的初速度。

  (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。

  (3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。

  (4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。

  (5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。

  三、实验:用打点计时器测速度

  1、两种打点即使器的异同点

  2、纸带分析;

  (1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。

  (2)、可计算出经过某点的瞬时速度

  (3)、可计算出加速度

  第二章匀变速直线运动的研究

  一、基本关系式v=v0+at

  x=v0t+1/2at2

  v2-vo2=2ax

  v=x/t=(v0+v)/2

  二、推论

  1、 vt/2=v=(v0+v)/2

  2、vx/2=

  3、△x=at2 { xm-xn=(m-n)at2}

  4、初速度为零的匀变速直线运动的比例式

  应用基本关系式和推论时注意:

  (1)、确定研究对象在哪个运动过程,并根据题意画出示意图。

  (2)、求解运动学问题时一般都有多种解法,并探求最佳解法。

  三、两种运动特例

  (1)、自由落体运动:v0=0 a=g v=gt h=1/2gt2 v2=2gh

  (2)、竖直上抛运动;v0=0 a=-g

  四、关于追及与相遇问题

  1、寻找三个关系:时间关系,速度关系,位移关系。两物体速度相等是两物体有最大或最小距离的临界条件。

  2、处理方法:物理法,数学法,图象法。

  五、理解伽俐略科学研究过程的基本要素。

  第三章相互作用

  一、三种常见的力

  1、重力:由于地球对物体的吸引而产生的。大小:G=mg,方向:竖直向下,

  作用点:重心(重力的等效作用点)

  2、弹力

  (1)、形变、弹性形变、定义等。

  (2)、产生条件:

  (3)、拉力、支持力、压力。(按照力的作用效果来命名的)

  (4)、弹簧的弹力的大小和方向,胡克定律F=kx

  (5)、可用假设法来判断是否存在弹力。

  3、摩擦力

  (1)、静摩擦力:①、产生条件②、方向判断

  ③、大小要用“力的平衡”或“牛顿运动定律”来解。

  (2)滑动摩擦力:①、产生条件②、方向判断

  ③、大小:f=uN。也可用“力的平衡”或“牛顿运动定律”来解。

  (3)、可用假设法来判断是否存在摩擦力。

  二、力的合成

  1、定义;由分力求合力的过程。

  2、合成法则:平行四边形定则或三角形定则。

  3、求合力的方法

  ①、作图法(用刻度尺和量角器) ②、计算法(通常是利用直角三角形)

  2、合力与分力的大小关系

  三、力的分解

  1、分解法则:平行四边形定则或三角形定则、

  2、分解原则:按照实际作用效果分解(即已知两分力的方向)

  3、把一个已知力分解为两个分力

  ①、已知两个分力的方向,求两个分力的大小。(解是唯一的)

  ②、已知一个分力的大小和方向,求另一个分力的大小和方向,(解是唯一的)

  (注意:通过作平行四边形或三角形判断)

  4、合力和分力是“等效替代”的关系。

  三、实验:探究求合力的方法(或“验证平行四边形定则”)

  第四章牛顿运动定律

  一、牛顿第一定律

  1、内容:(揭示物体不受力或合力为零的情形)

  2、两个概念:①、力

  ②、惯性:(一切物体都具有惯性,质量是惯性大小的唯一量)

  二、牛顿第二定律

  1、内容:(不能从纯数学的角度表述)

  2、公式:F合=ma

  3、理解牛顿第二定律的要点:

  ①、式中F是物体所受的一切外力的合力。②、矢量性③、瞬时性

  ④、独立性⑤、相对性

  三、牛顿第三定律

  作用力和反作用力的概念

  1、内容

  2、作用力和反作用力的特点:①等值、反向、共线、异点②瞬时对应③性质相同

  ④各自产生其作用效果

  3、一对相互作用力与一对平衡力的异同点

  四、力学单位制

  1、力学基本物理量:长度(l)质量(m)时间(t)

  力学基本单位:米(m)千克(kg)秒(s)

  2、应用:用单位判断结果表达式,能肯定错误(但不能肯定正确)

  五、动力学的两类问题。

  1、已知物体的受力情况,求物体的运动情况(v0 v t x )

  2、已知物体的运动情况,求物体的受力情况( F合或某个分力)

  3、应用牛顿第二定律解决问题的一般思路

  (1)明确研究对象。

  (2)对研究对象进行受力情况分析,画出受力示意图。

  (3)建立直角坐标系,以初速度的方向或运动方向为正方向,与正方向相同的力为正,与正方向相反的力为负。在Y轴和X轴分别列牛顿第二定律的方程。

  (4)解方程时,所有物理量都应统一单位,一般统一为国际单位。

  4、分析两类问题的基本方法

  (1)抓住受力情况和运动情况之间联系的桥梁——加速度。

  (2)分析流程图

  六、平衡状态、平衡条件、推论

  1、处理方法:解三角形法(合成法、分解法、相似三角形法、封闭三角形法)和正交分解法

  2、若物体受三力平衡,封闭三角形法最简捷。若物体受四力或四力以上平衡,用正交分解法

  七、超重和失重

  1、超重现象和失重现象

  2、超重指加速度向上(加速上升和减速下降),超了ma;失重指加速度向下(加速下降和减速上升),失ma。

  高三物理知识点总结21

  力学部分:

  1、基本概念:

  力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速

  2、基本规律:

  匀变速直线运动的基本规律(12个方程);

  三力共点平衡的特点;

  牛顿运动定律(牛顿第一、第二、第三定律);

  万有引力定律;

  天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);

  动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);

  动量守恒定律(四类守恒条件、方程、应用过程);

  功能基本关系(功是能量转化的量度)

  重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);

  功能原理(非重力做功与物体机械能变化之间的`关系);

  机械能守恒定律(守恒条件、方程、应用步骤);

  简谐运动的基本规律(两个理想化模型一次全振动四个过程五个量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;

  简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

  3、基本运动类型:

  运动类型受力特点备注

  直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析

  匀变速直线运动同上且所受合外力为恒力1.匀加速直线运动

  2.匀减速直线运动

  曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向

  合外力指向轨迹内侧

  (类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解

  匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心

  (合外力充当向心力)一般圆周运动的受力特点

  向心力的受力分析

  简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析

  4、基本:

  力的合成与分解(平行四边形、三角形、多边形、正交分解);

  三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);

  对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);

  处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);

  解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);

  针对简谐运动的对称法、针对简谐波图像的描点法、平移法

  5、常见题型:

  合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。

  斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);(3)整体(斜面和物体)受力情况及运动情况的分析(整体法、个体法)。

  动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。

  竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。

  人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。

  动量机械能的综合题:

  (1)单个物体应用动量定理、动能定理或机械能守恒的题型;

  (2)系统应用动量定理的题型;

  (3)系统综合运用动量、能量观点的题型:

  ①碰撞问题;

  ②爆炸(反冲)问题(包括静止原子核衰变问题);

  ③滑块长木板问题(注意不同的初始条件、滑离和不滑离两种情况、四个方程);

  ④子弹射木块问题 高中英语;

  ⑤弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等);

  ⑥单摆类问题:

  ⑦工件皮带问题(水平传送带,倾斜传送带);

  ⑧人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒);

  机械波的图像应用题:

  (1)机械波的传播方向和质点振动方向的互推;

  (2)依据给定状态能够画出两点间的基本波形图;

  (3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量;

  (4)机械波的干涉、衍射问题及声波的多普勒效应。

  电磁学部分:

  1、基本概念:

  电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速

  2、基本规律:

  电量平分原理(电荷守恒)

  库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)

  电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)

  电场力做功的特点及与电势能变化的关系

  电容的定义式及平行板电容器的决定式

  部分电路欧姆定律(适用条件)

  电阻定律

  串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)

  焦耳定律、电功(电功率)三个表达式的适用范围

  闭合电路欧姆定律

  基本电路的动态分析(串反并同)

  电场线(磁感线)的特点

  等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点

  常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)

  电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、)

  电动机的三个功率(输入功率、损耗功率、输出功率)

  电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)

  安培定则、左手定则、楞次定律(三条表述)、右手定则

  电磁感应的判定条件

  感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线

  通电自感现象和断电自感现象

  正弦交流电的产生原理

  电阻、感抗、容抗对交变电流的作用

  变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)

  3、常见仪器:

  示波器、示波管、电流计、电流表(磁电式电流表的原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。

  4、实验部分:

  (1)描绘电场中的等势线:各种静电场的模拟;各点电势高低的判定;

  (2)电阻的测量:①分类:定值电阻的测量;电源电动势和内电阻的测量;电表内阻的测量;②方法:伏安法(电流表的内接、外接;接法的判定;误差分析);欧姆表测电阻(欧姆表的使用方法、操作步骤、读数);半偏法(并联半偏、串联半偏、误差分析);替代法;x电桥法(桥为电阻、灵敏电流计、电容器的情况分析);

  (3)测定金属的电阻率(电流表外接、滑动变阻器限流式接法、螺旋测微器、游标卡尺的读数);

  (4)小灯泡伏安特性曲线的测定(电流表外接、滑动变阻器分压式接法、注意曲线的变化);

  (5)测定电源电动势和内电阻(电流表内接、数据处理:解析法、图像法);

  (6)电流表和电压表的改装(分流电阻、分压电阻阻值的计算、刻度的修改);

  (7)用多用电表测电阻及黑箱问题;

  (8)练习使用示波器;

  (9)仪器及连接方式的选择:①电流表、电压表:主要看量程(电路中可能提供的最大电流和最大电压);②滑动变阻器:没特殊要求按限流式接法,如有下列情况则用分压式接法:要求测量范围大、多测几组数据、滑动变阻器总阻值太小、测伏安特性曲线;

  (10)传感器的应用(光敏电阻:阻值随光照而减小、热敏电阻:阻值随温度升高而减小)

  5、常见题型:

  电场中移动电荷时的功能关系;

  一条直线上三个点电荷的平衡问题;

  带电粒子在匀强电场中的加速和偏转(示波器问题);

  全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法);

  电路中连接有电容器的问题(注意电容器两极板间的电压、电路变化时电容器的充放电过程);

  通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);

  通电导线在匀强磁场中的平衡问题;

  带电粒子在匀强磁场中的运动(匀速圆周运动的半径、周期;在有界匀强磁场中的一段圆弧运动:找圆心-画轨迹-确定半径-作辅助线-应用几何求解;在有界磁场中的运动时间);

  闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题;

  两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、动量观点的应用);

  带电粒子在复合场中的运动(正交、平行两种情况):

  ①.重力场、匀强电场的复合场;

  ②.重力场、匀强磁场的复合场;

  ③.匀强电场、匀强磁场的复合场;

  ④.三场合一。

  高三物理知识点总结22

  1、磁现象:

  磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。

  磁体:具有磁性的物体,叫做磁体。

  磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体;

  ②来源:天然磁体(磁铁矿石)、人造磁体;

  ③保持磁性的时间长短:硬磁体(永磁体)、软磁体。

  磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。

  磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。

  磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。

  无论磁体被摔碎成几块,每一块都有两个磁极。

  磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。

  钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。

  2、磁场:

  磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。

  磁场的基本性质:对放入其中的磁体产生磁力的作用。

  磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。

  磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识:

  ①磁感线是假想的曲线,本身并不存在;

  ②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向;

  ③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。 ④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密;

  3、地磁场:

  地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。

  指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。

  地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。

  高三物理知识点总结23

  知识点概述

  能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。这就是能量守恒定律,如今被人们普遍认同。

  知识点总结

  一、能量的转化与守恒

  1.化学能:由于化学反应,物质的分子结构变化而产生的能量。

  2.核能:由于核反应,物质的原子结构发生变化而产生的能量。

  3.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能的总量保持不变。

  ●内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

  即

  E机械能1+E其它1=E机械能2+E其它2

  ●能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。

  二、能源与社会

  1.可再生能源:可以长期提供或可以再生的能源。

  2.不可再生能源:一旦消耗就很难再生的能源。

  3.能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。

  三、开发新能源

  1.太阳能

  2.核能

  3.核能发电

  4、其它新能源:地热能、潮汐能、风能。

  能源的分类和能量的转化

  能源品种繁多,按其来源可以分为三大类:一是来自地球以外的太阳能,除太阳的辐射能之外,煤炭、石油、天然气、水能、风能等都间接来自太阳能;第二类来自地球本身,如地热能,原子核能(核燃料铀、钍等存在于地球自然界);第三类则是由月球、太阳等天体对地球的引力而产生的能量,如潮汐能。

  【一次能源】指在自然界现成存在,可以直接取得且不必改变其基本形态的能源,如煤炭、天然气、地热、水能等。由一次能源经过加工或转换成另一种形态的能源产品,如电力、焦炭、汽油、柴油、煤气等属于二次能源。

  【常规能源】也叫传统能源,就是指已经大规模生产和广泛利用的能源。表2-1所统计的几种能源中如煤炭、石油、天然气、核能等都属一次性非再生的常规能源。而水电则属于再生能源,如葛洲坝水电站和未来的三峡水电站,只要长江水不干涸,发电也就不会停止。煤和石油天然气则不然,它们在地壳中是经千百万年形成的(按现在的采用速率,石油可用几十年,煤炭可用几百年),这些能源短期内不可能再生,因而人们对此有危机感是很自然的。

  【新能源】指以新技术为基础,系统开发利用的能源。其中最引人注目的是太阳能的利用。据估计太阳辐射到地球表面的能量是目前全世界能量消费的1.3万倍。如何把这些能量收集起来为我们所用,是科学家们十分关心的问题。植物的光合作用是自然界“利用”太阳能极为成功的范例。它不仅为大地带来了郁郁葱葱的森林和养育万物的粮菜瓜果,地球蕴藏的煤、石油、天然气的起源也与此有关。寻找有效的光合作用的模拟体系、利用太阳能使水分解为氢气和氧气及直接将太阳能转变为电能等都是当今科学技术的重要课题,一直受到各国政府和工业界的支持与鼓励。

  以上是从能源的使用进行分类的方法,若从物质运动的形式看,不同的运动形式,各有对应的能量,如机械能(包括动能和势能)、热能、电能、光能等等。各种形式的能量可以互相转化,如动能可与势能互相转化(建筑工地打夯的落锤的上、下运动所包括的能量转化过程);化学能可与电能互相转化(化学电池和电解就是实现这种转化的两种过程)。在能量相互转化过程中,尽管做功的效率因所用工具或技术不同而有差别,但是折算成同种能量时,其总值却是不变的,这就是能量转化和能量守恒定律,这是自然界中一条极为基本的定律(另一条为质量守恒定律),也是识破各式各样永动机的有力判据。在能量转化过程过中,未能做有用功的部分称为“无用功”,通常以热的形式表现。

  物质体系中,分子的动能、势能、电子能量和核能等的总和称为内能。内能的绝对值至今尚无法直接测定,但体系状态发生变化时,内能的变化以功或热的形式表现,它们是可以被精确测量的。体系的内能、热效应和功之间的关系式为:

  △E=Q+W

  其中△E是体系内能的变化,Q是体系从外界吸收的热量,W是外界对体系所做的功。这就是著名的热力学第一定律的数学表达式,也就是能量守恒定律的数学表达式。应用上述公式时,要注意各种物理量的正、负号,即:

  △E──(+)体系内能增加, (-)体系内能体系减少;

  Q──(+)体系吸收热量, (-)体系放出能量;

  W──(+)外界对体系做功, (-)体系对外界做功。

  例如1.00 g乙醇在78.3℃时气化,需吸收 854 J的热,这些乙醇由液态变成气态,在101 kPa压力下所做的体积膨胀功为63.2J,这是体系对外界所做的功,应为负值,所以该体系内能的变化△E=[854+(- 63.2)]J=+791J,△E为正值,即体系内能增加了791J。

  能源的利用,其实就是能量的转化过程。如煤燃烧放热使蒸汽温度升高的过程就是化学能转化为蒸汽内能的过程;高温蒸汽推动发电机发电的过程是内能转化为电能的过程;电能通过电动机可转化为机械能;电能通过白炽灯泡或荧光灯管可转化为光能;电能通过电解槽可转化为化学能等等。柴草、煤炭、石油和天然气等常用能源所提供的能量都是随化学变化而产生的,多种新能源的利用也与化学变化有关。化学变化的实质是化学键的改组,所以了解化学键及键能等基本概念,将有助于加深对能源问题的认识。

  高三物理知识点总结24

  一、重力及其相互作用

  1、力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。

  按照力命名的依据不同,可以把力分为:

  ①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)

  ②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。

  力的作用效果:

  ①形变;②改变运动状态。

  2、重力:

  由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定,

  注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。

  3、四种基本相互作用

  万用引力相互作用、电磁相互作用、强相互作用、弱相互作用

  二、弹力:

  (1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。

  (2)条件:①接触;②形变。但物体的形变不能超过弹性限度。

  (3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)

  (4)大小:

  ①弹簧的弹力大小由F=kx计算,

  ②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定。

  滑动摩擦力

  1、两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。

  2、在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。

  3、滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN

  4、μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。

  5、滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。

  6、条件:直接接触、相互挤压(弹力),相对运动/趋势。

  7、摩擦力的大小与接触面积无关,与相对运动速度无关。

  8、摩擦力可以是阻力,也可以是动力。

  9、计算:公式法/二力平衡法。

  研究静摩擦力

  1、当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。

  2、物体所受到的静摩擦力有一个最大限度,这个最大值叫最大静摩擦力。

  3、静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。

  4、静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm

  5、最大静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0·N(μ≤μ0)

  6、静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。

  高三物理知识点总结25

  一、开普勒行星运动定律

  (1)、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,

  (2)、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积,

  (3)、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

  二、万有引力定律

  1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比、

  2、公式:F=Gr2m1m2,其中G=6.67×10-11 N·m2/kg2,称为引力常量、

  3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离、对于均匀的球体,r是两球心间的距离、

  三、万有引力定律的应用

  1、解决天体(卫星)运动问题的基本思路

  (1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:Gr2Mm=mrv2=mω2r=mT2π2r.

  (2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=GR2Mm,gR2=GM.

  2、天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2Mm=mT24π2r,得出天体质量M=GT24π2r3.

  (1)若已知天体的半径R,则天体的密度ρ=VM=πR34=GT2R33πr3

  (2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT23π可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度、

  3、人造卫星

  (1)研究人造卫星的基本方法:看成匀速圆周运动,其所需的向心力由万有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、

  (2)卫星的线速度、角速度、周期与半径的关系

  ①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、

  ②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、

  ③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大

  (3)人造卫星的超重与失重

  ①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态、

  ②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态、在这种情况下凡是与重力有关的力学现象都会停止发生、

  (4)三种宇宙速度

  ①第一宇宙速度(环绕速度)v1=7.9 km/s.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度、若7.9 km/s≤v<11.2 km/s,物体绕地球运行、

  ②第二宇宙速度(脱离速度)v2=11.2 km/s.这是物体挣脱地球引力束缚的最小发射速度、若11.2 km/s≤v<16.7 km/s,物体绕太阳运行、

  ③第三宇宙速度(逃逸速度)v3=16.7 km/s这是物体挣脱太阳引力束缚的最小发射速度、若v≥16.7 km/s,物体将脱离太阳系在宇宙空间运行、

  题型:

  1、求星球表面的重力加速度在星球表面处万有引力等于或近似等于重力,则:GR2Mm=mg,所以g=R2GM(R为星球半径,M为星球质量)、由此推得两个不同天体表面重力加速度的关系为:g2g1=R12R22·M2M1.

  2、求某高度处的重力加速度若设离星球表面高h处的重力加速度为gh,则:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可见随高度的增加重力加速度逐渐减小、ggh=(R+h)2R2.

  3、近地卫星与同步卫星

  (1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=RGM==7.9 km/s,是所有卫星的最大绕行速度;运行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8 m/s2是所有卫星的最大加速度、

  (2)地球同步卫星的五个“一定”

  ①周期一定T=24 h. ②距离地球表面的高度(h)一定③线速度(v)一定④角速度(ω)一定

  ⑤向心加速度(a)一定

  高三物理知识点总结26

  1、摩擦力定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。

  2、摩擦力产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。

  说明:三个条件缺一不可,特别要注意“相对”的理解。

  3、摩擦力的方向:

  ①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。

  ②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。

  说明:

  (1)“与相对运动方向相反”不能等同于“与运动方向相反”。

  滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。

  (2)滑动摩擦力可能起动力作用,也可能起阻力作用。

  4、摩擦力的大小:

  (1)静摩擦力的大小:

  ①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过最大静摩擦力,即0≤f≤fm 但跟接触面相互挤压力FN无直接关系。具体大小可由物体的运动状态结合动力学规律求解。

  ②最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。

  ③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。

  (2)滑动摩擦力的大小:

  滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。

  公式:F=μFN (F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。

  说明:

  ①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。

  ②μ与接触面的材料、接触面的情况有关,无单位。

  ③滑动摩擦力大小,与相对运动的速度大小无关。

  5、摩擦力的效果:总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。

  说明:滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关。

  高三物理知识点总结27

  1.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

  2.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

  3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

  4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}

  5.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

  6.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

  7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

  8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

  9.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)

  10.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

  11.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}

  12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

  13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

  常见电容器〔见第二册P111〕

  14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

  15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

  类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

  抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

  注:

  (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

  (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

  (3)常见电场的电场线分布要求熟记〔见图[第二册P98];

  (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

  (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

  (6)电容单位换算:1F=106μF=1012PF;

  (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

  (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

  高三物理知识点总结28

  1.希腊人泰勒斯发现摩擦过的琥珀吸引轻小物体的现象。P2

  2.公元一世纪,我国东汉学者王充在《论衡》中写下“顿牟掇芥”一语,指的是用玳瑁的壳吸引轻小物体。P2

  在《论衡》中描述的“司南”使人们公认最早的磁性定向工具。P80

  3.美国科学家富兰克林命名了正电荷和负电荷。P2

  4.电荷量e的数值最早是由美国物理学家密立根测得的。P4、P37

  5.法国学者库仑在前人工作基础上通过实验总结出库仑定律。P6

  6.英国物理学家,化学家法拉第提出:电荷的周围存在着有它产生的电场,处在电场中的其它电荷受到电场给予的作用力。P10

  7.麦克斯韦预言了电磁波的存在,并且把光现象与电磁现象统一起来。P14

  8.范德格拉夫静电加速器。P38

  9.富兰克林发现莱顿瓶放电可使缝衣针磁化。P80

  10.丹麦物理学家奥斯特发现了电流的磁效应。P81

  11.安培发现,磁体对通电导线有作用力。P81

  12.特斯拉,美国电气工程师,是交变电流进入实用领域的主要推动者。P84

  13.法国学者安培提出了著名的分子电流假说。P87

  14.洛伦兹,荷兰物理学家,主要贡献是他的电子论。提出了著名的洛伦兹力公式。P95

  15.美国物理学家E.H.霍尔观察到霍尔效应。P103

  高三物理知识点总结29

  1.光本性学说的发展简史

  (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.

  (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象.

  2、光的干涉

  光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。

  2.干涉区域内产生的亮、暗纹

  ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……)

  ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)

  相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。

  3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

  ⑴各种不同形状的障碍物都能使光发生衍射。

  ⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象。)

  ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。

  4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光是横波。

  5.光的电磁说

  ⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。)

  ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。

  各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。

  ⑶红外线、紫外线、X射线的主要性质及其应用举例。

  种类产生主要性质应用举例

  红外线一切物体都能发出热效应遥感、遥控、加热

  紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2

  X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤

  高三物理知识点总结30

  1.v-t图上两图线相交的点,不是相遇点,只是在这一时刻相等。

  2.人们得出“重的物体下落快”的错误结论主要是由于空气阻力的影响。

  3.严格地讲自由落体运动的物体只受重力作用,在空气阻力影响较小时,可忽略空气阻力的影响,近似视为自由落体运动。

  4.自由落体实验实验记录自由落体轨迹时,对重物的要求是“质量大、体积小”,只强调“质量大”或“体积小”都是不确切的。

  5.自由落体运动中,加速度g是已知的,但有时题目中不点明这一点,我们解题时要充分利用这一隐含条件。

  6.自由落体运动是无空气阻力的理想情况,实际物体的运动有时受空气阻力的影响过大,这时就不能忽略空气阻力了,如雨滴下落的最后阶段,阻力很大,不能视为自由落体运动。

  7.自由落体加速度通常可取9.8m/s2或10m/s2,但并不是不变的,它随纬度和海拔高度的变化而变化。

  8.四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件,如果v0≠0则这四个比例式不成立。

  9.匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。

  10.常取初速度v0的方向为正方向,但这并不是一定的,也可取与v0相反的方向为正方向。

  11.汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解。

  12.找准追及问题的临界条件,如位移关系、速度相等等。

  13.用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。

  14.产生弹力的条件之一是两物体相互接触,但相互接触的物体间不一定存在弹力。

【高三物理知识点总结】相关文章:

高三物理教师教学总结01-06

高二物理知识点总结08-30

高一物理必修一知识点总结08-30

高三语文必修三知识点总结02-25

高一物理知识点总结(通用5篇)01-14

中考物理压强知识点梳理11-16

初中物理易错知识点11-10

初中物理常用的知识点11-10

高三物理试卷练习及答案11-30

高三物理教学反思15篇01-22