数学有趣小故事15篇(热门)
数学有趣小故事1
当说罗马数字可能大家一时半会想不起来,那说起钟表上的数字,大家应该知道了。古罗马时期,罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。

他发现,有了“0”,进行数学运算方便极了,还把印度人使用“0”的方法向大家做了介绍。这件事被当时的罗马教皇知道后,非常恼怒,并不赞同“0”存在,说在上帝创造的.数里没有“0”这个怪物,还下令把这位学者抓起来用刑。虽然“0”被禁止使用,然而罗马的数学家们,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
数学有趣小故事2
三国时期,刘备、关羽和张飞三人在桃花园结为异姓兄弟,定下了匡复汉室的千秋伟业。刘备请来了当时最著名的学士——诸葛亮。
张飞见刘备对诸葛亮十分敬重,心里十分不悦,说:“大哥,打仗靠得是将领和士兵的神勇,你请个手无缚鸡之力的文人来干什么?”
“你知道运筹帷幄,决胜千里吗?”刘备反问了一句话。
张飞挠了半天头,也想不明白这两句话的`含义。
一天,传令兵飞奔进入军帐,“报!军师,我城正北方向发现曹军!”
诸葛亮十分镇定,问道:“来敌有多少人?”
传令兵回道:“敌军先行骑兵约800人,是弓箭手人数的2倍,最后有大批步兵,人数约是弓箭手的5倍!”
诸葛亮摇着羽扇,说道:“来敌人数不多,骑兵800人,弓箭手400人,步兵人。”
关羽、张飞、赵云等将军请求带兵迎敌。
诸葛亮拿出兵符,命令关羽和赵云各带一千士兵前往迎战。这可急坏了张飞,他嚷道:“二哥和赵兄弟都带兵出战了,为何留我一人?”
诸葛亮指着地图笑道:“张将军另有重任,你带500士兵,从东门出发,向北偏东30度方向行2500米到达街亭,再从街亭向北偏西60度方向行20xx米到达松树林,躲藏在树林中,见曹军溃退到此,你截断他们的退路,我军即可大获全胜!”
张飞不满的说:“二哥带一千士兵打头阵,为何我只有500士兵断后路?”
诸葛亮笑道:“打败兵,有500士兵足够了!断后路即可防止曹军逃跑,也可防止曹军接应。”
张飞这才明白了军师的用兵之计,他挠了挠头,不好意思的说:“军师,你说的方向,我记不住,你给我画张图吧!”
诸葛亮拿起笔画了一张图递给张飞说道:“我在营中静候张将军得胜归来!”
数学有趣小故事3
希帕蒂亚 (公元约370~约415) , 西罗马帝国时期著名的女数学家、天文学家和哲学家。她全力协助父亲注释了欧几里德的《几何原本》。后来《几何原本》成为世界各国中学几何学的教材, 先后出了1000 多种以上的版本。希帕蒂亚由於为欧氏几何的普及做出了卓越的贡献, 在数学发展史上成为第一位最杰出的女数学家而永载史册。
希帕蒂亚生在古埃及的亚历山大城, 她的父亲是托勒密王朝开始设立的文化研究院的院长, 是大数学家和知识渊博的学者。他对女儿天资聪颖又爱动脑子非常喜欢, 想方设法帮助她一步一步踏入知识的王国, 希望她长大以后也能成为一位受人尊敬的学者。
10 岁的希帕蒂亚已经显露出超人的才华。她用心攻读数学, 对欧几里德的《几何原本》已经有了初步的了解, 尤其对各种各样的数学应用题最感兴趣。有天清晨, 父女俩照例进行体育锻炼, 在林间草地上呼吸清新的空气。
这时一轮红日刚刚从地平线上升起。小希帕蒂亚全身早已热汗淋漓了, 可她还是不肯停止运动。
父亲说: “别练了孩子, 你该休息休息了。”
女儿说: “好。咱们在草坪上散步吧。”
太阳光照射在緑茵上, 花草树叶上的露珠开始消散了, 湿润空气中隐含一种淡淡的馨香。父女俩兴致勃勃地交谈着。
父亲说: “你看, 草地上咱们的影子是什么?”
女儿说: “一长一短, 一大一小, 一胖一瘦。我看爸爸的影子像一只大黑熊, 我的影子像一只小猴子。”
两个人都乐得哈哈笑个不止。
父亲说: “小东西, 也亏你想象得出来。”
女儿说: “本来就像么。再说它总是影子么。”
父亲说: “好吧。我问你, 这地上的`影子又是怎样形成的呢?”
女儿说: “那还不简单?物体把太阳光挡住了, 不就成了影子?”
父亲说: “说得对。过几天我带你去参观有名的古埃及法老齐阿普斯的金字塔。到时候咱们要测量一下金字塔的高度。我要你先想一个最方便的测量方法。行吗?”
女儿高兴得跳起来, 说: “太好了。我一定要想出测量的最好办法, 又简单又方便。”
父亲上班去了。小希帕蒂亚把自己关在书房里学功课。花园里鸟儿的鸣叫再也惊动不了她, 要是在平时, 她早就跑出去玩了。但是父亲要她先想好测量金字塔的方法, 而她到现在还没想好, 说什么也不能出去玩。她知道父亲的脾气, 要是完不成预先指定的任务, 游金字塔就会落空。
希帕蒂亚在桌子上画了许多张金字塔的图形, 聚精会神地思考着计算塔高的方法。父亲告诉过她: 金字塔的底部是一个正方形, 那么底部的边长就是能够用尺子测量出来的了。根据勾股弦定理, 很容易算出金字塔底面 (正方形) 对角线的长度, 如果再根据勾股弦定理演算, 只要知道金字塔一条棱的长度, 便很容易算出金字塔的高度了。
数学有趣小故事4
多少只袜子才能配成一对?
关于多少只袜子能配成对的问题,答案并非两只。而且这种情况并非只在我家发生。为什么会这样呢?那是因为我敢担保在冬季黑蒙蒙的早上,如果我从装着黑色和蓝色袜子的抽屉里拿出两只,它们或许始终都无法配成一对。虽然我不是太幸运,但是如果我从抽屉里拿出3只袜子,我敢说肯定会有一双颜色是一样的。不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的答案是3只。
当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的`,至少必须取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样的。
数学有趣小故事5
咱们班出了一位数学小天才,那就是我们的课代表——罗青云!
罗青云对数学十分热爱,凭借自身的天赋,很快成为了数学老师的掌上明珠,心中的.蛔虫。只要翻开她的作业本,上面布满了鲜红的印记,足以看出她在数学方面的优秀程度。
记得有一次,我遇到一个棘手的题目,正一筹莫展时,罗青云走了过来询问我:“发生什么事了?谁欺负你了?还是碰到‘拦路虎’了?”
由于我和罗青云关系很好,便把一切告诉了她。她听后,拍拍胸脯,信心满满地对我说:“放心吧,有我在呢!”
罗青云仔细地帮我分析了题目,在向我讲解了解题方法之后,我豁然开朗,原来是我太粗心大意,没看清题目要求。接着她又跟我讲述了其它几种解题方法,让我体会到了数学的乐趣,并不再觉得它那么困难了。
又有一次,数学老师给我们进行了测验,面对密密麻麻的题目,我越来越烦躁。再看看罗青云,已经进入了检查阶段。我可不想被她超越,于是继续埋头苦干。
过了几天,成绩公布了,她一如既往地获得了满分,而我只比她少了6分!此刻,我不禁对她肃然起敬!
罗青云果真是我们班名副其实的数学小专家啊!
数学有趣小故事6
小明问:车轮为什么是圆的啊?小强用圆规画了一个圆,说:“我们量一量圆周上任何一点到圆心的距离,发现它们都相等,这个叫做半径。车轮做成圆形,车轴安在圆心,车轴与地面的距离,总是等于车轮半径,这样车轮在地面可以平稳的滚动。假如车轮是方形或三角形,从轮缘到圆心的距离各不相等,那车子走起来,会忽高忽低上下震动。因此,车轮都是圆的'。”说完之后,小明明白了,他深有感触地说:“看来,处处离不开数学啊!” 这个短些
小明问:车轮为什么是圆的啊?小强用圆规画了一个圆,说:“我们量一量圆周上任何一点到圆心的距离,发现它们都相等,这个叫做半径。车轮做成圆形,车轴安在圆心,车轴与地面的距离,总是等于车轮半径,这样车轮在地面可以平稳的滚动。假如车轮是方形或三角形,从轮缘到圆心的距离各不相等,那车子走起来,会忽高忽低上下震动。因此,车轮都是圆的。”说完之后,小明明白了,他深有感触地说:“看来,处处离不开数学啊!”
数学有趣小故事7
欧拉是最伟大的数学家之一,分析、代数、几何都是欧拉伟大的贡献。欧拉还是最多产的数学家之一,共写下了886本书籍和论文。
欧拉出生在一个牧师家庭。很小的时候,就利用“周长相等四边形正方形面积最大”帮助他的'父亲改造羊圈。让老爹见识了欧拉的数学天赋。
爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。
他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。
他发现他的材料只够围100米的篱笆。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难。
小欧拉却向父亲说,不用缩小羊圈,他有办法。父亲不相信小欧拉会有办法。心想:“世界上哪有这样便宜的事情?”但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。
小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。
跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。
父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。
13岁,欧拉考进巴塞尔大学,当时举世轰动,是这所大学最年轻的大学生
数学有趣小故事8
那天午后,母亲催促我完成课时训练,碰巧遇到一道棘手的问题,便向母亲求助。
题目是这样的:母亲在市场上购买一篮苹果,先将一半赠予王大妈。接着途经外婆家,再次分享剩余的一半给外婆。待返回家中,把此刻剩下的苹果减半给小华,最后仅剩一颗苹果留给了莉莉。
问题是:母亲究竟采购了多少颗苹果呢?
听完我的阐述,母亲建议我再好好审题,或许能找到答案。
于是,我按照母亲的.建议逐字细读,但依旧一头雾水,只能硬着头皮再度请教母亲。
母亲提示我换个角度思考这个问题会变得容易解答。既然篮子里只剩下一颗苹果,那就是分给莉莉后的剩余部分,那么分给莉莉之前就应该有两个苹果。而这两个苹果又是在分给小华之后的,所以分给小华之前...
我迫不及待地接话:“那就应该是分给外婆后的四个苹果!那分给外婆之前的数量就...
瞬间,我恍然大悟:“哦!原来母亲共买了十六个苹果!”
在母亲的引导下,我成功解开了这个困扰已久的难题。
数学有趣小故事9
关于高斯的故事,最广为流传的是“5050”。老师本来想用一道难题,让全班的同学安静一节课的时间,却没有想到小高斯只用了一两分钟就说出了答案。他把1、2、3……分别和100、99、98结对子相加,就得到50个101,最后轻易就算出从1加到100的和是5050。
毕达哥拉斯的故事:
毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛)的.贵族家庭,自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。因为向往东方的智慧,经过万水千山,游历了当时世界上两个文化水准极高的文明古国——巴比伦和印度,以及埃及(有争议),吸收了美索不达米亚文明和印度文明(公元前480年)的文化。
他最早悟出万事万物背后都有数的法则在起作用;认为无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学。他在数论和几何方面都有杰出贡献,尤其以最早发现“勾股定理”(西方称“毕达哥拉斯定理”)著称于世。
陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。 有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。
理发店里人很多,大家挨着次序理发。陈景润拿得牌子是三十八号。他想:轮到我还早着哩,时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把他弄懂,这是陈景润的脾气。他看了看表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员喊三十八号吗?
华罗庚初中毕业后,因家境贫寒,无力进入高中学习,只好到黄炎培在上海创办的中华职业学校学习会计。那时罗庚站在柜台前,顾客来了就帮助父亲做生意,打算盘、记账,顾客一走就又埋头看书演算起数学题来。有时入了迷,竟忘了接待顾客,甚至把算题结果当作顾客应付的货款,使顾客吓一跳。因为经常发生类似的莫名其妙的事情,时间久了,街坊邻居都传为笑谈,大家给他起了个绰号,叫“罗呆子”。
数学有趣小故事10
动物中的数学“天才”
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组 成。组成底盘的菱形的`钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半—— 即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默 契”?蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然 是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当 时地球一天仅21.9小时,一年不是365天,而是400天。
数学有趣小故事11
燃绳计时
一根绳子,从一端开始燃烧,烧完需要1小时。现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的`时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。
数学有趣小故事12
同学们,数学对我们的生活有多大的帮助呢?就拿日常生活来说吧,在菜市场购物能迅速结算,在清点物品时能快速计数。
不知各位同学是否和我有相同的.体会,在数学的学习过程中总会遇到一些趣味横生的现象。现在让我来分享几则我个人的观察与体会。
会心一算很重要,这里传授大家两个巧妙的计算方式。1.当你需要计算500乘以多为数时,只需将500翻倍后再与被乘数相乘,接着将得出的结果除以2即可。比如我们求解500×448628,首先是500×2=1000,接下来是448628×1000=448628000,最终结果是448628000÷2=224314000。再来一个方法,若遇到“头同尾合十”的运算题目,我们可以采取这样的策略:将十位数与十位数加1的积,再乘以100,最后加上个位数两者的乘积。举例说明:53×57=?是不是觉得有些难度呢?其实非常简单,首要步骤是(5+1) ×5=30,紧接着是30×100=3000,最后一步是3000+3×7=3021,掌握这个小技巧,对你日后数学的学习大有益处。
数学真是太神奇啦!未来,我会更加用功地学习数学,并且掌握更多实用的方法。
数学有趣小故事13
1832年5月29日,法国年轻气盛的伽罗瓦为了所谓的“爱情与荣誉”打算和另外一个人决斗。
他知道对手的枪法很好,自己获胜的希望很小,很可能会死去。他问自己,如何度过这最后的夜晚?在这之前,他曾写过两篇数学论文,但都被权威轻蔑地拒绝了:一次是被伟大的数学家柯西;另一次是被神圣的法兰西科学院他头脑中的东西是有价值的。
整个晚上,他把飞逝的时间用来焦躁地一气写出他在科学上的遗言。在死亡之前尽快地写,把他丰富的思想中那些伟大的东西尽量写出来。
他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。他在天亮之前那最后几个小时写出的东西,一劳永逸地为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一个极为重要的分支——群论。
第二天上午,在决斗场上,他被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去。”
他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。
数学家的问题费马是17世纪法国图卢兹议会的'议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。
费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。
关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。
为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。
自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。
在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过。
数学有趣小故事14
“悖论”这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论。那些结论会使我们惊讶无比。悖论主要有三种形式:1.一种论断看起来好象肯定错了,实际上却是对的(佯谬);2.一种论断看起来好象肯定对了,实际上却错了(似是而非);3.一系列理论看起来好象无懈可击,却导致了逻辑上自相矛盾。
悖论有点象变戏法,人们看完以后,几乎没有一个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他后,他便不知不觉地被引进深奥而有趣的数学世界中。
著名的《科学美国人》杂志社编的《数学悖论奇景》中,有不少生动而奇妙的题目,下面几则便选自其中。有的题目作了简略的分析,有的只提出问题,留侍读者去思索。
1.唐·吉诃德悖论
小说《唐·吉诃德》里描写过一个国家,它有一条奇怪的法律,每个旅游者都要回答一个问题:“你来这里做什么?”回答对了,一切都好办;回答错了,就要被绞死。
一天,有个旅游者回答:“我来这里是要被绞死。”
旅游者被送到国王那里。国王苦苦想了好久:他回答得是对还是错?究竟要不要把他绞死。如果说他回答得对,那就不要绞死他——可这样一来,他的回答又成了错的了!如果说他回答错了,那就要绞死他——但这恰恰又证明他回答对了。实在是左右为难!
2.梵学者的预言
一天,梵学者与他的女儿苏耶发生了争论。
苏椰:你是一个大骗子,爸爸。你根本不能预言未来。
学者:我肯定能。
苏椰:不,你不能。我现在就可以证明它!
苏椰在一张纸上写了一些字,折起来,压在水晶球下。她说:
“我写了一件事,它在3点钟前可能发生,也可能不发生。请你预言它究竟是不是会发生,在这张白卡片上写下‘是’字或‘不’字。要是你写错了,你答应现在就买辆汽车给我,不要拖到以后好吗?”
“好,一言为定。”学者在卡片上写了一个字。
3点钟时,苏椰把水晶球下面的纸拿出来,高声读道:“在下午3点以前,你将写一个‘不’字在卡片上。”
学者在卡片上写的是“是”字,他预言错了:“在下午3点以前,写一个‘不’字在卡片上”这一件事并未发生。但如果他在卡片上写的是“不”呢?也还错!因为写“不”就表示他预言卡片上的事不会发生,但它恰恰发生了——他在卡片上写的就是一个‘不’字。
苏椰笑了:“我想要一辆红色的赛车,爸爸,要带斗形座的。”
3.意想不到的老虎
公主要和迈克结婚,国王提出一个条件:
“我亲爱的,如果迈克打死这五个门后藏着的一只老虎,你就可以和他结婚。迈克必须顺次序开门,从1号门开始。他事先不知道哪个房间里有老虎,只有开了那扇门才知道。这只老虎的出现将是料想不到的。”
迈克看着这些门,对自己说道:
“如果我打开了四个空房间的门,我就会知道老虎在第五个房间。可是,国王说我不能事先知道它在哪里,所以老虎不可能在第五个房间。”
“五被排除了,所以老虎必然在前四个房间内。同样的推理,老虎也不会在最后一个房间——第四间内。”
按同样的理由推下去,迈克证明老虎不能在第三、第二和第一个房间。迈克十分快乐,他满怀信心地去看门。使他惊骇的是,老虎从第二个房间跳了出来。
迈克的推理并没有错,但他失败了。老虎的出现完全出乎意料,表明国王遵守了他的诺言。也许,迈克进行推理的本身就与国王关于老虎“料想不到”的条件发生了矛盾。迄今为止,逻辑学家对于迈克究竟错在哪里还末得到一致意见。
4.钱包游戏
史密斯教授和两个学生一道吃午饭。教授说:“我来告诉你们一个新游戏。把你们的钱包放在桌子上,我来数里面的钱。钱少的人可以赢掉另一个钱包中的所有钱。”
学生甲想:“如果我的钱多,就会输掉我这些钱;如果他的多,我就会赢多于我的钱。所以赢的要比输的多,这个游戏对我有利。”
同样的道理,学生乙也认为这个游戏对他有利。
请问,一个游戏怎么会对双方都有利呢?
5.一块钱哪儿去了?
一个唱片商店里,卖30张老式硬唱片,一块钱两张;另外30张软唱片是一块钱三张。那天,这60张唱片卖光了。30张硬唱片收入15元,30张软唱片收入10元,总共是25元。
第二天,老板又拿出60张唱片。他想:“如果30张唱片是一块钱卖两张,30张是一块钱卖三张,何不放在一起,两块钱卖5张呢?”这一天,60张唱片全按两块钱5张卖出去了。老板点钱时才发现,只卖得24元,而不是25元。
这一块钱到哪儿去了呢?
6.惊人的.编码
外星的一位科学家基塔先生,来到地球收集人类的资料,遇到了赫尔曼博士。
赫尔曼:“你何不带一套大英百科全书回去?这套书最全面地汇总了我们的所有知识。”
基塔:“可惜,我带不走那么重的东西。不过,我可以把整套百科全书编码,然后只要在这根金属棒上作个标记,就代表了百科全书中的全部信息。”真是再简单不过了!
基塔先生是怎样做到的呢?
基塔:“我先把每个字母、数字、符号,都用一个数来代表,零用来隔开它们。例如cat一词就编为3-0-1-0-22。我用高级袖珍计算机快速扫描,就能把百科全书的全部内容转变为一个庞大的数字。前面加一个小数点,就使它变成了一个十进制的分数,例如0.2015015011……
基塔先生在金属棒上找到了一个点,这个点将棒分为a和b两段,而a/b刚好等于上面那个十进制分数值。
基塔:“回去后,测出a和b的值,就求出了它们的比值;根据编码的规定,你们的百科全书就被破译出来了。”
这样,基塔离开地球时只带了一根金属棒,而他却已“满载而归”了!
7.不可逃遁的点
帕特先生沿着一条小路上山。他早晨七点动身,当晚七点到达山顶。第二天早晨沿同一小路下,晚上七点又回到山脚,遇见了拓扑学老师克莱因。
克莱因:“帕特,你可曾知道你今天下山时走过这样一个地点,你通过这点的时刻恰好与你昨天上山时通过这点的时刻完全相同?”
帕特:“这绝不可能!我走路时快时慢,有时还停下来休息。”
克莱因:“当你开始下山时,设想你有一个替身同时开始登山,这个替身登山的过程同你昨天登山时完全相同。你和这个替身必定要相遇。我不能断定你们在哪一点相遇,但一定会有这样一点。……”
帕特明白了。你明白了吗?
8.橡皮绳上的蠕虫
橡皮绳长1公里,一条蠕虫在它的一端。蠕虫以每秒1厘米的稳定速度沿橡皮绳爬行;而橡皮绳每过1秒钟就拉长1公里。如此下去,蠕虫最后究竟会不会到达终点呢?
乍一想,随着橡皮绳的拉伸,蠕虫离终点越来越远了。但细心的读者会想到:随着橡皮绳的每次拉伸,蠕虫也向前挪了。
如果用数学公式表示,蠕虫在第n秒未在橡皮绳上的位置,表示为整条绳的分数就是(推导过程从略):
当n足够大(约为e100000)时,上式的值就超过了1,也就是说蠕虫爬到了终点。
9.棘手的电灯
一盏电灯,用按钮来开关。假定把灯拧开一分钟,然后关掉半分钟,再拧开1/4分钟,再关掉1/8分钟,如此往复,这一过程的末了恰好是两分钟。
那么,在这一过程结束时,电灯是开着,还是关着?这个问题实在是难!
10、罗素悖论
一天,一个理发师挂出了一块招牌:“村里所有不自己理发的人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。因为如果他给自己理发,那么他就属于自己给自己理发的那一类。但是,招牌上说明他不给这类理发,因此他不能自己理发。如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上说明他要给所有不自己理发的人理发,因此他应该自己理。由此可见,不管做怎样的推论,理发师所说的话总是自相矛盾的。这是一个著名的悖论,称为“罗素悖论”。这是由英国哲学家罗素提出来的,他把关于集合论的一个著名悖论用故事通俗地表述出来。 1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为他们的基础。到19世纪末,全部数学几乎都建立在集合论是基础上了。就在这时,集合论中接连出现了一些自相矛盾的结果,特别是1902年“罗素悖论”的提出,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大量新成果,也带来了数学观念的变革。
11、上帝不是万能的
用反证法证明 证明:假设上帝是万能的,那么上帝能造出一块他自己都举不起来的石头, 否则上帝就不是万能的;但是上帝又举不起这块石头,因此上帝不是万能的,这与假设矛盾;所以原假设不成立,即上帝不是万能的
数学有趣小故事15
唯有热爱数学,方能掌握其精髓。——引言
记得一次遇到棘手的数学问题,烦恼不已。母亲见状,赠送了我一本《数学故事》,希望我能从中领悟。当我轻轻翻开书页,内心的焦虑瞬间平息,随之而来的是对数学世界的探索之旅。
许多人抱怨数学难以理解且乏味无趣,起初我也曾抱有同样想法。然而,《数学故事》颠覆了我的'认知,揭示出数学的趣味性和吸引力。这本书巧妙地将抽象的概念融入情节丰富的故事之中,使得原本对我并无太大兴趣的数学顿时变得生动起来。
数学究竟是什么?用康托尔的话来说:“数学的本质在于它的自由”。数学如同一门艺术,可以激发我们的思维活力,并使我们的知识更为全面。因此,我们应该欣赏并钟爱数学,而非将其视为敌手。只有真正地喜爱和热衷于数学,才能充分发挥潜能,掌握这门学科的奥秘。
《数学故事》引领着我们进入奇妙的数学殿堂,带我们领略数学的魅力所在。翻开此书,就是开启了数学智慧之门。
【数学有趣小故事】相关文章:
数学有趣小故事10-28
有趣的数学小故事05-31
数学有趣小故事【热门】12-27
简短又有趣的数学小故事12-23
有趣的数学小故事大全【15篇】12-25
简短又有趣的数学小故事【优选】12-24
数学有趣小故事集合(15篇)12-27
有趣的科普小故事10-16
有趣的汉字小故事11-24