高中数学说课稿

时间:2023-01-04 12:03:07 数学说课稿 我要投稿
  • 相关推荐

【荐】高中数学说课稿

  在教学工作者开展教学活动前,可能需要进行说课稿编写工作,借助说课稿可以提高教学质量,取得良好的教学效果。说课稿应该怎么写呢?下面是小编帮大家整理的高中数学说课稿,仅供参考,希望能够帮助到大家。

【荐】高中数学说课稿

高中数学说课稿1

  一、说教材:

  1. 地位及作用:

  “椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。

  2. 教学目标:

  根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:

  (1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。

  (2)能力目标:

  (a)培养学生灵活应用知识的能力。

  (b) 培养学生全面分析问题和解决问题的能力。

  (c)培养学生快速准确的运算能力。

  (3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。

  3. 重点、难点和关键点:

  因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。

  二、 说教材处理

  为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:

  1.学生状况分析及对策:

  2.教材内容的组织和安排:

  本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:

  (1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业

  三、 说教法和学法

  1.为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。

  2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。

  四、 教学过程

  教学环节

  3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。

  例1属基础,主要反馈学生掌握基本知识的程度。

  例2可强化基本技能训练和基本知识的灵活运用。

  小结

  为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。

  1.椭圆的定义和标准方程及其应用。

  2.椭圆标准方程中a,b,c诸关系。

  3.求椭圆方程常用方法和基本思路。

  通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。

  布置作业

  (1) 77页——78页 1,2,3,79页 11

  (2) 预习下节内容

  巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。

高中数学说课稿2

  一、教材分析

  1、教材所处的地位和作用

  奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。

  奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。所以,本节课起着承上启下的重要作用。

  2、学情分析

  从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了必须数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

  从学生的思维发展看,高一学生思维本事正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、

  3、教学目标

  基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

  【知识与技能】

  1)能确定一些简单函数的奇偶性。

  2)能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

  【过程与方法】

  经历奇偶性概念的构成过程,提高观察抽象本事以及从特殊到一般的归纳概括本事。

  【情感、态度与价值观】

  经过自主探索,体会数形结合的思想,感受数学的对称美。

  从课堂反应看,基本上到达了预期效果。

  4、教学重点和难点

  重点:函数奇偶性的概念和几何意义。

  几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下头的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了研究函数定义域的问题。所以,在介绍奇、偶函数的定义时,必须要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。所以,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

  难点:奇偶性概念的数学化提炼过程。

  由于,学生看待问题还是静止的、片面的,抽象概括本事比较薄弱,这对建构奇偶性的概念造成了必须的困难。所以我把奇偶性概念的数学化提炼过程设计为本节课的难点。

  二、教法与学法分析

  1、教法

  根据本节教材资料和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的进取状态,从而培养思维本事。从课堂反应看,基本上到达了预期效果。

  2、学法

  让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、构成的过程,从而使学生掌握知识。

  三、教学过程

  具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、构成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下头我对这六个环节进行说明。

  (一)设疑导入、观图激趣

  由于本节资料相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的资料,使学生的思维迅速定向,到达开始就明确目标突出重点的效果。

  用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。经过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

  (二)指导观察、构成概念

  在这一环节中共设计了2个探究活动。

  探究1、2数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是经过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。之后学生填表,从数值角度研究图象的这种特征,体此刻自变量与函数值之间有何规律引导学生先把它们具体化,再用数学符号表示。借助课件演示(令比较得出等式,再令,得到)让学生发现两个函数的对称性反应到函数值上具有的特性,然后经过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立。最终给出偶函数(奇函数)定义(板书)。

  在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

  (三)学生探索、领会定义

  探究3下列函数图象具有奇偶性吗?

  设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)

  (四)知识应用,巩固提高

  在这一环节我设计了4道题

  例1确定下列函数的奇偶性

  选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下头完成。

  例1设计意图是归纳出确定奇偶性的步骤:

  (1)先求定义域,看是否关于原点对称;

  (2)再确定f(-x)=-f(x)还是f(-x)=f(x)。

  例2确定下列函数的奇偶性:

  例3确定下列函数的奇偶性:

  例2、3设计意图是探究一个函数奇偶性的可能情景有几种类型?

  例4(1)确定函数的奇偶性。

  (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

  例4设计意图加强函数奇偶性的几何意义的应用。

  在这个过程中,我重点关注了学生的推理过程的表述。经过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,到达当堂消化吸收的效果。

  (五)总结反馈

  在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

  在本节课的最终对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用本事、增强错误的预见本事是提高数学综合本事的很重要的策略。

  (六)分层作业,学以致用

  必做题:课本第36页练习第1-2题。

  选做题:课本第39页习题1、3A组第6题。

  思考题:课本第39页习题1、3B组第3题。

  设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步到达不一样的人在数学上得到不一样的发展。

高中数学说课稿3

  我担任高职单招辅导班的数学科教学,可以说每节课都是复习课。今天,我说的是复习课这种课型。内容是《函数》这一章中的“反函数”这一节。

  一、教材分析:

  反函数这一节在《函数》这章中是一个难点,篇幅不多(课时少),在高考考纲中的要求也比较简单。但我个人这样认为,复习课应尽量把与本节内容相关的新旧知识系统地串在一起,所以在备课时要找一条能把知识点连在一起的线索。这线索就是函数的三要素:

  (一)教学目标:

  ①使学生掌握反函数的概念并能求出简单函数的反函数(考纲要求)。

  ②互为反函数的两个函数具有的性质,以及这些性质在解题中的运用。

  ③通过知识的系统性,培养学生的逆向思维能力和逻辑思维能力。

  (二)重点、难点:

  ①重点:使学生能求出简单函数的反函数。

  ②难点:反函数概念的理解。

  二、教学方法:

  整节课采用传统的讲解法。

  首先要认识反函数应先有函数的概念这知识,用例子来说明反函数的求法以及让学生来完成一题没有反函数的函数,从而得出一个不满足函数定义的关系式,通过分析来得到一个函数具有反函数的条件。这里是用“欲擒故纵”的手法,加深对概念的理解,也是突破难点的关键。

  三、学生学习方法:

  学生认识了反函数的求法(步骤),在老师的引导下得出三个结论,并运用这些结论来解题。希望能达到提高学生性质的解题能力和思维能力的目标。

  四、教学过程:

  (一)温故:函数的概念、三要素

  (二)新课:例1:求y=2x+1的反函数

  解:

  即(x∈R)

  注意步骤,新关系式满足从R到R是一个函数关系式。

  互这反函数的特点:

  ①运算互逆;②顺序倒置

  例2:y=x2(x∈R)用y的代数表示x

  得x=这x不是y的函数,不满足函数定义

  若对,y=x2的定义域改为x≥0

  可得x=,即y=(x≥0)

  当逆对应满足函数定义,原函数才存在反函数。

  得到结论①互为反函数的定义域、值域交换

  即

  分别在同一坐标上画出以上互为反函数的图象

  得到结论②图象关于y=x对称

  ③单调性一致

  (三)练习

  1、求的反函数,并求出反函数的值域。

  2、函数的图象关于对称,求a的值。

  讲评:略。

  (四)小结:

  (五)布置作业:

高中数学说课稿4

  各位评委,老师们:大家好!

  很高兴参加这次说课活动。这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导。希望各位评委和老师们对我的说课内容提出宝贵意见。

  我说课的内容是<平面向量>的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本—必修)<数学>第一册下,教学内容为第96页至98页第五章第一节。本校是浙江省一级重点中学,学生基础相对较好。我在进行教学设计时,也充分考虑到了这一点。

  下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想。

  一说教材

  (1)地位和作用

  向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系。向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用。

  平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。为学习向量的知识体系奠定了知识和方法基础。

  (2)教学结构的调整

  课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别。然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念。为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程。在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成。

  (3)重点,难点,关键

  由于本节课是本章内容的第一节课,是学生学习本章的基础。为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。所以向量,相等向量的概念,向量的几何表示是这节课的重点。本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。

  二说教学目标的确定

  根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

  (1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。会根据图形判定向量是否平行,共线,相等。

  (2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

  (3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

  三说教学方法的选择

  Ⅰ教学方法

  本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:

  (1)由教材的特点确立类比思维为教学的主线。

  从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。因此在教学中运用类比作为思维的主线进行教学。让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。

  (2)由学生的特点确立自主探索式的学习方法

  通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。

  Ⅱ教学手段

  本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。

  四教学过程的设计

  Ⅰ知识引入阶段———提出学习课题,明确学习目标

  (1)创设情境——引入概念

  数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

  由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。

  (2)观察归纳——形成概念

  由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

  (3)讨论研究——深化概念

  在得到概念后进行归纳,深化,之后向学生提出以下三个问题:

  ①向量的要素是什么?

  ②向量之间能否比较大小?

  ③向量与数量的区别是什么?

  同时指出这就是本节课我们要研究和学习的主题。

  Ⅱ知识探索阶段———探索平面向量的平行向量。相等向量等概念

  (1)总结反思——提高认识

  方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。

  (2)即时训练—巩固新知

  为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

  [练习1]判断下列命题是否正确,若不正确,请简述理由.

  ①向量与是共线向量,则A、B、C、D四点必在一直线上;

  ②单位向量都相等;

  ③任一向量与它的相反向量不相等;

  ④四边形ABCD是平行四边形的充要条件是=;

  ⑤模为0是一个向量方向不确定的充要条件;

  ⑥共线的向量,若起点不同,则终点一定不同.

  [练习2]下列命题正确的是( )

  A.a与b共线,b与c共线,则a与c也共线

  B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点

  C.向量a与b不共线,则a与b都是非零向量

  D.有相同起点的两个非零向量不平行

  Ⅲ知识应用阶段————共线向量,相等向量等概念的初步应用

  在本阶段的教学中,我采用的是课本上一道典型的例题:在一个复杂图形中观察,辨认平行,相等的有向线段。选用本题的目的是让学生进行独立思考,自主探究,交流讨论等探索活动,加深对概念的理解和对难点的突破。

  例如图所示,设O是正六边形ABCDEF的中心,分别写出图中与向量相等的向量。(同时思考:向量与相等么?向量与相等么?)

  具体教学安排如下:

  (1)分析解决问题

  先引导学生分析解决问题。包括向量的概念,:向量相等的概念。抓住相等向量概念的实质:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等。进而进行正确的辨认,直至最终解决问题。

  (2)归纳解题方法

  主要引导学生归纳以下两个问题:①零向量的方向是任意的,它只与零向量相

  等;②两个向量只要它们的模相等,方向相同就是相等向量。一个向量只要不改变它的大小和方向,是可以任意平行移动的,既向量是自由的。

  Ⅳ学习,小结阶段———归纳知识方法,布置课后作业

  本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识,技能,方法的一般规律,为后续学习打好基础。

  具体的教学安排如下:

  (1)知识,方法小结在知识层面上我首先引导学生回顾本节课的主要内容,提醒学生要抓住向量的本质:大小与方向,对它们进行类比,加深对每个概念的理解。

  在方法层面上我将带领学生回顾探索过程中用到的思维方法和数学方法如:

  类比,数形结合,等价转化等进行强调。

  (2)布置课后作业

  阅读教材96至97页内容,整理课堂笔记,习题5。1第1,2,3题。

高中数学说课稿5

  一、说教材:

  1、地位、作用和特点:

  《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。

  本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以

  是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是

  特点之二是: 。

  教学目标:

  根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

  (1)知识目标:A、B、C

  (2)能力目标:A、B、C

  (3)德育目标:A、B

  教学的重点和难点:

  (1)教学重点:

  (2)教学难点:

  二、说教法:

  基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

  导入新课 新课教学

  反馈发展

  三、说学法:

  学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

  1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

  本节教师通过列举具体事例来进行分析,归纳出 ,并依

  据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。

  2、让学生亲自经历运用科学方法探索的过程。 主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授 时,可通过

  演示,创设探索 规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

  3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

  4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

  四、教学过程:

  (一)、课题引入:

  教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

  (二)、新课教学:

  1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

  2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

  (三)、实施反馈:

  1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

  2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

  五、板书设计:

  在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

  六、说课综述:

  以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对

  的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

  总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学说课稿6

  一、教学目标

  (1)知识与能力目标:学习椭圆的定义,掌握椭圆标准方程的两种形式及其推

  导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

  (2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探

  索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。

  (3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。

  二、教学重点、难点

  (1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。

  (2)教学难点:椭圆标准方程的建立和推导。

  三、教学过程

  (一)创设情境,引入概念

  1、动画演示,描绘出椭圆轨迹图形。

  2、实验演示。

  思考:椭圆是满足什么条件的点的轨迹呢?

  (二)实验探究,形成概念

  1、动手实验:学生分组动手画出椭圆。

  实验探究:

  保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?

  思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?

  2、概括椭圆定义

  引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。

  教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

  思考:焦点为的椭圆上任一点M,有什么性质?

  令椭圆上任一点M,则有

  (三)研讨探究,推导方程

  1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

  2、研讨探究

  问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点M,有

  ,尝试推导椭圆的方程。

  思考:如何建立坐标系,使求出的方程更为简单?

  将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。

  方案一方案二

  按方案一建立坐标系,师生研讨探究得到椭圆标准方程

  =1(),其中b2=a2-c2(b>0);

  选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b>0)。

  教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。

  (四)归纳概括,方程特征

  1、观察椭圆图形及其标准方程,师生共同总结归纳

  (1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;

  (2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;

  (3)椭圆标准方程中三个参数a,b,c关系:;

  (4)椭圆焦点的位置由标准方程中分母的大小确定;

  (5)求椭圆标准方程时,可运用待定系数法求出a,b的值。

  2、在归纳总结的基础上,填下表

  标准方程

  图形a,b,c关系焦点坐标焦点位置

  在x轴上

  在y轴上

  (五)例题研讨,变式精析

  例1、求适合下列条件的椭圆的标准方程

  (1)两个焦点的坐标分别是,椭圆上一点P到两焦点距离和等于10。

  (2)两焦点坐标分别是,并且椭圆经过点。

  例2、(1)若椭圆标准方程为及焦点坐标。

  (2)若椭圆经过两点求椭圆标准方程。

  (3)若椭圆的一个焦点是,则k的值为。

  (A)(B)8(C)(D)32

  例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段,求线段中点M的轨迹。

  (六)变式训练,探索创新

  1、写出适合下列条件的椭圆标准方程

  (1),焦点在x轴上;

  (2)焦点在x轴上,焦距等于4,并且经过点P;

  2、若方程表示焦点在y轴上的椭圆,则k的范围。

  3、已知B,C是两个定点,周长为16,求顶点A的轨迹方程。

  4、已知椭圆的焦距相等,求实数m的值。

  5、在椭圆上上求一点,使它与两个焦点连线互相垂直。

  6、已知P是椭圆上一点,其中为其焦点且,求三解形面积。

  (七)小结归纳,提高认识

  师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。

  (八)作业训练,巩固提高

  课本第96页习题§8。1第3题、第5题、第6题。

  课后思考题:

  1、知是椭圆的两个焦点,AB是过的弦,则周长是。

  (A)2a(B)4a(C)8a(D)2a2b

  2、的两个顶点A,B的坐标分别是边AC,BC所在直线的斜

  率之积等于,求顶点C的轨迹方程。

  2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?

  教学设计说明

  椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

  椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

  椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。

  设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。

高中数学说课稿7

  一、说教材

  1、教材的地位、作用及编写意图

  《对数函数》出此刻职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等资料,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考资料。

  2、教学目标的确定及依据。

  依据教学大纲和学生获得知识、培养本事及思想教育等方面的要求:我制定了如下教育教学目标:

  (1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

  (2)本事目标:培养学生自主学习、综合归纳、数形结合的本事。

  (3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

  (4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

  3、教学重点、难点及关键

  重点:对数函数的概念、图象和性质;

  难点:利用指数函数的图象和性质得到对数函数的图象和性质;

  关键:抓住对数函数是指数函数的反函数这一要领。

  二、说教法

  大部分学生数学基础较差,理解本事,运算本事,思维本事等方面参差不齐;同时学生学好数学的自信心不强,学习进取性不高。针对这种情景,在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地理解并提高学生的学习兴趣和进取性,很好地突破难点和提高教学效率。

  三、说学法

  教给学生方法比教给学生知识更重要,本节课注重调动学生进取思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)对照比较学习法:学习对数函数,处处与指数函数相对照。

  (2)探究式学习法:学生经过分析、探索、得出对数函数的定义。

  (3)自主性学习法:经过实验画出函数图象、观察图象自得其性质。

  (4)反馈练习法:检验知识的应用情景,找出未掌握的资料及其差距。

  这样可发挥学生的主观能动性,有利于提高学生的各种本事。

  四、说教学程序

  1、复习导入

  (1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

  设计意图:设计的提问既与本节资料有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的本事。

  (2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

  设计意图:这样的导言可激发学生求知欲,使学生渴望明白问题的答案。

  2、认定目标(出示教学目标)

  3、导学达标

  按"教师为主导,学生为主体,训练为主线"的原则,安排师生互动活动。

  (1)对数函数的概念

  引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a》0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a》0且a≠1.从而引出对数函数的概念,展示课件。

  设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于理解。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,经过比较充分体现指数函数及对数函数的内在联系。

  (2)对数函数的图象

  提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都能够根据函数的解析式,列表、描点画图。再研究一下,我们还能够用什么方法画出对数函数的图象呢?

  让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

  教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

  方法一(描点法)首先列出x,y(y=log2x,y=logx)值的对应表,因为对数函数的定义域为x》0,所以可取x=···,,,1,2,4,8···,请计算对应的y值,然后在坐标系内描点、画出它们的图象。

  方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就能够得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=logx的图象,再出示课件,教师加以解释。

  设计意图:用这种对称变换的方法画函数的图象,能够加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样能够充分调动学生自主学习的进取性。

  (3)对数函数的性质

  在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a》1与0《a《1两种情景列出对数函数图象和性质表,()体现了从"特殊到一般"、"从具体到抽象"的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生比较着记忆。

  设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新本事有帮忙,学生易于理解易于掌握,并且利用表格,能够突破难点。

  由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

  设计意图:经过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

  4、巩固达标(见课件)

  这一训练是为了培养学生利用所学知识解决实际问题的本事,经过这个环节学生能够加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现"数形结合"和"分类讨论"的思想。

  5、反馈练习(见课件)

  习题是对学生所学知识的反馈过程,教师能够了解学生对知识掌握的情景。

  6、归纳总结(见课件)

  引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,所以,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

  7、课外作业:

  (1)完成P782、3题

  (2)当底数a》1与0《a《1时,底数不一样,对数函数图象有什么持点?

  五、说板书

  板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

高中数学说课稿8

  一、说教材

  1、 教材的地位和作用

  《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。

  2、 教学目标

  (1)知识目标:a、通过实例了解集合的含义,理解集合以及有关概念;

  b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。

  (2)能力目标:a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力;

  b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。

  (3)情感目标:a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;

  b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

  3、重点和难点

  重点:集合的概念,元素与集合的关系。

  难点:准确理解集合的概念。

  二、学情分析(说学情)

  对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。

  三、说教法

  针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。

  四、学习指导(说学法)

  教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。

  五、教学过程

  1、引入新课:

  a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。

  b、介绍集合论的创始者康托尔

  2、究竟什么是集合?(实例探究)切合学生现有的认知水平, 以学生熟悉的事物(物体),以实际生活为背景进行探究, 为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。

  3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。

  教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。

  4、 熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。

  5、 集合的符号记法,为本节重点做好铺垫。

  6、 从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:⑴集合元素的确定。⑵理解两符号的含义。

  7、 思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。

  8、 从所举的例子中抽象出数集的概念,并给出常见数集的记法。

  9、 学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。

  10、知识的实际应用:

  问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。

  11、课堂小节

  以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。

  六、评价

  教学评价的及时能有效调动课堂气氛,感染学生的情绪,对课堂教学发挥着积极作用,教学过程遵重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。

  七、教学反思

  1、 通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。

  2、 启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。

  八、板书设计

高中数学说课稿9

  今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。

  一、说教材

  1、本节在教材中的地位和作用:

  本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。

  2. 教学目标确定:

  (1)能力训练要求

  ①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。

  ②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。

  (2)德育渗透目标

  ①培养学生善于通过观察分析实物形状到归纳其性质的能力。

  ②提高学生对事物的感性认识到理性认识的能力。

  ③培养学生“理论源于实践,用于实践”的观点。

  3. 教学重点、难点确定:

  重 点:1.棱锥的截面性质定理 2.正棱锥的性质。

  难 点:培养学生善于比较,从比较中发现事物与事物的区别。

  二、说教学方法和手段

  1、教法:

  “以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。

  在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。

  2、教学手段:

  根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。

  三、说学法:

  这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。

  四、 学程序:

  [复习引入新课]

  1.棱柱的性质:

  (1)侧棱都相等,侧面是平行四边形

  (2)两个底面与平行于底面的截面是全等的多边形

  (3)过不相邻的两条侧棱的截面是平行四边形

  2.几个重要的四棱柱:

  平行六面体、直平行六面体、长方体、正方体

  思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?

  [讲授新课]

  1、棱锥的基本概念

  (1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念

  (2).棱锥的表示方法、分类

  2、棱锥的性质

  (1). 截面性质定理:

  如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

  已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’。

  证明:(略)

  引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥

  的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

  (2).正棱锥的定义及基本性质:

  正棱锥的定义:

  ①底面是正多边形

  ②顶点在底面的射影是底面的中心

  ①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;

  ②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;

  棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

  引申:

  ①正棱锥的侧棱与底面所成的角都相等;

  ②正棱锥的侧面与底面所成的二面角相等;

  (3)正棱锥的各元素间的关系

  下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本 图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。

  引申:

  ①观察图中三棱锥S-OBM的侧面三角形状有何特点?

  (可证得∠SOM =∠SOB =∠SMB =∠OMB =900,所以侧面全是直角三角形。)

  ②若分别假设正棱锥的高SO= h,斜高SM= h’,底面边长的一半BM= a/2,底面正多边形外接圆半径OB=R,内切圆半径OM= r,侧棱SB=L,侧面与底面的二面角∠SMO= α ,侧棱与底面组成的角 ∠SBO= β, ∠BOM=1800/n (n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。

  (课后思考题)

  [例题分析]

  例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )

  A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥

  (答案:D)

  例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。

  ﹙解析及图略﹚

  例3.已知正四棱锥的棱长和底面边长均为a,求:

  (1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦

  ﹙解析及图略﹚

  [课堂练习]

  1、 知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。

  ﹙解析及图略﹚

  2、 锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。

  ﹙解析及图略﹚

  [课堂小结]

  一:棱锥的基本概念及表示、分类

  二:棱锥的性质

  截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

  引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

  2.正棱锥的定义及基本性质

  正棱锥的定义:

  ①底面是正多边形

  ②顶点在底面的射影是底面的中心

  (1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高

  相等,它们叫做正棱锥的斜高;

  (2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

  引申: ①正棱锥的侧棱与底面所成的角都相等;

  ②正棱锥的侧面与底面所成的二面角相等;

  ③正棱锥中各元素间的关系

  [课后作业]

  1:课本P52 习题9.8 : 2、 4

  2:课时训练:训练一

高中数学说课稿10

  【一】教学背景分析

  1.教材结构分析

  《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.

  2.学情分析

  圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.

  根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3.教学目标

  (1) 知识目标:①掌握圆的标准方程;

  ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

  ③利用圆的标准方程解决简单的实际问题.

  (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;

  ②加深对数形结合思想的理解和加强对待定系数法的运用;

  ③增强学生用数学的意识.

  (3) 情感目标:①培养学生主动探究知识、合作交流的意识;

  ②在体验数学美的过程中激发学生的学习兴趣.

  根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

  4. 教学重点与难点

  (1)重点:圆的标准方程的求法及其应用.

  (2)难点: ①会根据不同的已知条件求圆的标准方程;

  ②选择恰当的坐标系解决与圆有关的实际问题.

  为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:

  好学教育:

  【二】教法学法分析

  1.教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.

  2.学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程. 下面我就对具体的教学过程和设计加以说明:

  【三】教学过程与设计

  整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:

  创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高

  反馈训练 形成方法 小结反思 拓展引申

  下面我从纵横两方面叙述我的教学程序与设计意图.

  首先:纵向叙述教学过程

  (一)创设情境——启迪思维

  问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.

  通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.

  (二)深入探究——获得新知

  问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  2.如果圆心在,半径为时又如何呢?

  好学教育:

  这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.

  得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.

  (三)应用举例——巩固提高

  I.直接应用 内化新知

  问题三 1.写出下列各圆的标准方程:

  (1)圆心在原点,半径为3;

  (2)经过点,圆心在点.

  2.写出圆的圆心坐标和半径.

  我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.

  II.灵活应用 提升能力

  问题四 1.求以点为圆心,并且和直线相切的圆的方程.

  2.求过点,圆心在直线上且与轴相切的圆的方程.

  3.已知圆的方程为,求过圆上一点的切线方程.

  你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是什么?

  我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.

  III.实际应用 回归自然

  问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).

  好学教育:

  我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.

  (四)反馈训练——形成方法

  问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.

  2.求圆过点的切线方程.

  3.求圆过点的切线方程.

  接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.

  (五)小结反思——拓展引申

  1.课堂小结

  把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 ①圆心为,半径为r 的圆的标准方程为:

  圆心在原点时,半径为r 的圆的标准方程为:.

  ②已知圆的方程是,经过圆上一点的切线的方程是:.

  2.分层作业

  (A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.

  3.激发新疑

  问题七 1.把圆的标准方程展开后是什么形式?

  2.方程表示什么图形?

  在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.

  以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计

  (一)突出重点 抓住关键 突破难点

  好学教育:

  求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.

  第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.

  (二)学生主体 教师主导 探究主线

  本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.

  (三)培养思维 提升能力 激励创新

  为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.

  以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.

高中数学说课稿11

  1、教学目标:

  一、借助单位圆理解任意角的三角函数的定义。

  二、根据三角函数的定义,能够判断三角函数值的符号。

  三、通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。

  四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。

  2、教学重点与难点:

  重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。

  难点:任意角的三角函数概念的建构过程。

  授课过程:

  一、引入

  在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。

  二、创设情境

  三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?

  学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。

  问题:

  1、锐角三角函数能否表示成第二种比值方式?

  2、点P能否取在终边上的其它位置?为什么?

  3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。

  练习:计算的各三角函数值。

  三、任意角的三角函数的定义

  角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢?

  尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗?

  评价学生给出的定义。给出任意角三角函数的定义。

  四、解析任意角三角函数的.定义

  三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域)

  对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。

  五、三角函数的应用。

  1、已知角,求a的三角函数值。

  2、已知角a终边上的一点P(-3,-4),求各三角函数值。

  以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题:

  1、已知角如何求三角函数值?

  2、利用角a的终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?)

  3、变式:已知角a终边上点P(-3b,-4b),(b0),求角a的各三角函数值。

  4、探究:三角函数的值在各象限的符号。

  六、小结及作业

  教案设计说明:

  新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计。

  首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。

  其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思。这样也有助于学生对任意角三角函数概念的理解。

  再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的。培养数形结合的思想。

高中数学说课稿12

  一、教材分析

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

  二、教学目标

  1、学习目标

  (1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属

  于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  2、能力目标

  (1)能够把一句话一个事件用集合的方式表示出来。

  (2)准确理解集合与及集合内的元素之间的关系。

  3、情感目标

  通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。

  三、教学重点与难点

  重点 集合的基本概念与表示方法;

  难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

  四、教学方法

  (1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

  (2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

  五、学习方法

  (1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,

  教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。

  (2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培

  优扶差,满足不同。”

  六、教学思路

  具体的思路如下

  复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。

  一、 引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  二、 正体部分

  学生阅读教材,并思考下列问题:

  (1)集合有那些概念?

  (2)集合有那些符号?

  (3)集合中元素的特性是什么?

  (4)如何给集合分类?

  (一)集合的有关概念

  (1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,

  都可以称作对象.

  (2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由

  这些对象的全体构成的集合.

  (3)元素:集合中每个对象叫做这个集合的元素.

  集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??

  1. 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,

  对学生的例子予以讨论、点评,进而讲解下面的问题。

  2、元素与集合的关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A

  要注意“∈”的方向,不能把a∈A颠倒过来写. (举例)

  集合A={3,4,6,9}a=2 因此我们知道a?A

  3、集合中元素的特性

  (1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.

  (2)互异性:集合中的元素一定是不同的.

  (3)无序性:集合中的元素没有固定的顺序.

  4、集合分类

  根据集合所含元素个属不同,可把集合分为如下几类:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限个元素的集合叫做有限集

  (3)含有无穷个元素的集合叫做无限集

  注:应区分?,{?},{0},0等符号的含义

  5、常用数集及其表示方法

  (1)非负整数集(自然数集):全体非负整数的集合.记作N

  (2)正整数集:非负整数集内排除0的集.记作N*或N+

  (3)整数集:全体整数的集合.记作Z

  (4)有理数集:全体有理数的集合.记作Q

  (5)实数集:全体实数的集合.记作R

  注:(1)自然数集包括数0.

  (2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排

  除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(课本例1)

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(课本例2)

  说明:(课本P5最后一段)

  思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (三)课堂练习(课本P6练习)

  三、 归纳小结与作业

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  书面作业:习题1.1,第1- 4题

高中数学说课稿13

  一、教材分析

  1、教材内容

  本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2。1。3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。

  2、教材所处地位、作用

  函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质。通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。通过上述活动,加深对函数本质的认识。函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础。此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一。从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。

  3、教学目标

  (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性

  的方法;

  (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质。

  4、重点与难点

  教学重点(1)函数单调性的概念;

  (2)运用函数单调性的定义判断一些函数的单调性。

  教学难点(1)函数单调性的知识形成;

  (2)利用函数图象、单调性的定义判断和证明函数的单调性。

  二、教法分析与学法指导

  本节课是一节较为抽象的数学概念课,因此,教法上要注意:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性。

  2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决。

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达。

  4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性。

  在学法上:

  1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

  2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃。

  三、 教学过程

  教学

  环节

  教 学 过 程

  设 计 意 图

  问题

  情境

  (播放中央电视台天气预报的音乐)

  满足在定义域上的单调性的讨论。

  2、重视学生发现的过程。如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程。

  3、重视学生的动手实践过程。通过对定义的解读、巩固,让学生动手去实践运用定义。

  4、重视课堂问题的设计。通过对问题的设计,引导学生解决问题。

高中数学说课稿14

  一.说教材

  1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。应用线性规划的图解法解决一些实际问题。

  2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

  3.教学目标

  (1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。

  了解并初步应用线性规划的图解法解决一些实际问题。

  (2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。

  (3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。

  4.重点与难点

  重点:理解和用好图解法

  难点:如何用图解法寻找线性规划的最优解。

  二.说教学方法

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

  (1)启发引导学生思考、分析、实验、探索、归纳。这能充分调动学生的主动性和积极性。

  (2)采用“从特殊到一般”、“化抽象为具体”、“化静为动”的方法。这有利于学生对知识进行主动建构;有利于突出重点、解决难点;也有利于发挥学生的创造性。

  (3)体现“等价转化”、“数形结合”的思想方法。这样可发挥学生的主观能动性,有利于提高学生的各种能力。

  三.说学法指导

  教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:观察分析、联想转化、动手实验、练习巩固。

  (1)观察分析:通过引例让学生观察化旧知为新知,造成学生认知冲突。

  (2)联想转化:学生通过分析、探索、得出解决问题的方法。

  (3)动手实验:通过作图、实验、从而得出一般解题步骤。

  (4)练习巩固:让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容及其差距。

  四.说教学程序

  1、导入课题: 由一个不等式组表示平面区域转化为在此平面区域内一二元一次数的最值问题,造成学生认知冲突。

  3、导学达标之一:创设情境、形成概念

  通过引例的问题让学生探索解决新问题的方法。

  (设计意图:利用已经学过的知识逐步分析,学以致用,使学生经历数学知识的形成过程,从而提高学生数学的地提出、分析和解决问题的能力。)

  然后老师逐步引导,动手实验,化抽象为直观。从而得到解决此类问题的方法,并对比引例给出相关概念:线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解。并能根据引例提炼线性规划问题的解法——图解法。

  (设计意图:引导学生观察和分析问题,激发学生的探索欲望,从而培养学生的解决问题和总结归纳的能力。)

  4.导学达标之二:针对问题、举例讲解、形成技能

  例一:课本61页例3

  (创设意境:,练习是使学生明白数学来源于实际又运用于实际,同时使学生进初步应用线性规划的图解法解决一些实际问题。)

  6.巩固目标:

  练习一:学生做课堂练习P64例4

  (叫学生提出解决问题的方法,并用多媒体展示,并根据问题的实际意义,考虑取值范围。造成新的认知冲突,从而研究探索,得到整点最优解的一种求法。)

  练习二:为了赚大钱,老张最近承包了一家具厂,可老张却闷闷不乐,原来家具厂有方木料90m3,五合板600m2,老张准备加工成书桌和书厨出售,他通过调查了解到:生产每张书桌需要方木料、五合板2m2,生产每个书橱需要方木料、五合板1m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元。老张却不知如何安排?(电脑显示问题)

  (设计意图:通过实际问题,激发学生兴趣,培养学生的数学应用意识,力求学生能够对现实生活中蕴含的一些数学模式进行思考和作出判断。)

  7.归纳与小结:

  小结本课的主要学习内容是什么?(由师生共同来完成本课小结)

  (创设意境:让学生参与小结,引导学生对所学知识进行反思,有利于加强学生记忆和形成良好的数学思维习惯)

  8.布置作业:

  P64. 2

  五.说板书设计

  板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于记忆,有利于提高教学效果。

高中数学说课稿15

  一、教材分析:

  1.教材所处的地位和作用:

  本节内容在全书和章节中的作用是:《1.3.1柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。

  2.教育教学目标:

  根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  知识与能力:

  (1)了解柱体、锥体、台体的表面积.

  (2)能用公式求柱体、锥体、台体的表面积。

  (3)培养学生空间想象能力和思维能力

  过程与方法:

  让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。

  情感、态度与价值观:

  通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。

  3.重点,难点以及确定依据:

  本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

  教学重点:柱,锥,台的表面积公式的推导

  教学难点:柱,锥,台展开图与空间几何体的转化

  二、教法分析

  1.教学手段:

  如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。

  2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  三.学情分析

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

  (2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

  最后我来具体谈谈这一堂课的教学过程:

  四、教学过程分析

  (1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性

  (2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。

  (3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。

  (4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

  (5)例题及练习,见学案。

  (6)布置作业。

  针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

  (7)小结。让学生总结本节课的收获。老师适时总结归纳。

【高中数学说课稿】相关文章:

高中数学的说课稿07-11

高中数学经典说课稿07-11

高中数学免费说课稿09-30

高中数学经典说课稿范文12-06

高中数学章节说课稿06-13

高中数学说课稿11-14

高中数学说课稿08-26

高中数学向量说课稿09-09

高中数学统计说课稿07-11

高中数学获奖说课稿07-11