欢迎来到原中小学教育资源网!

第七册《商不变的规律》说课稿

说课稿 时间:2019-05-08 我要投稿
【www.ruiwen.com - 说课稿】

  一、说教材

  《商》是九年义务教育小学数学第七册中的内容,这是一节新授课。“商不变的规律”是一个新的数学规律,被除数和除数必须同时扩大(或缩小)相同的倍数,商才能不变,这是一种函数思想,学生以前没有接触过。这个规律不但是被除数,除数末尾有零的除法的简便运算的根据,也是以后学习小学除法的依据,也有助于分数的基本性质的理解,学生在学习课本之前已经掌握除数是三位数的除法法则,为本课题的学习提供了知识铺垫和思想孕伏。

  通过本节课的教学,要求学生理解、掌握商不变性质,会用商不变性质,对口算除法进行简便运算。学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,同时渗透初步的辨证唯物主义思想启蒙教育。根据前述的教学内容和教学目标确定本节课的 教学重点是引导学生发现并掌握商不变的性质,其中对商不变性质的理解是本课的难点。

  二、说教学思想

  根据学生的年龄特征,创设有效的问题情境,引导学生自主观察、比较相关算式的内在联系,探究、发现、验证并运用规律,既让学生掌握了商不变性质,又让学生积极、主动地参与到知识的形成过程中去,培养学生的学习能力。

  三、说教学流程

  第一环节:激趣设疑,提出问题

  在这一环节中,我安排了两个步骤,分别是激趣设疑和提出问题,我用“狐狸兄弟烧饼广告”展开:小白兔最爱吃烧饼了,这一天,它来到森林里的“小狐烧饼公司”,想买到好吃又便宜的烧饼。但狐狸兄弟们的广告,把它难住了,不知该买哪一家的吃。狐狸大兄弟的广告:“240元可以买40个!”狐狸二兄弟的广告:“480元可以买80个!”狐狸三兄弟的广告:“4800元可以批发800个!”狐狸四兄弟的广告:“60元可买10个!”狐狸五兄弟的广告:“24元可以买4个烧饼!”通过这五道算式的计算,学生发现烧饼的单价都是6元。这时狐狸六兄弟又贴出了广告:“烧饼每个:(24÷13)÷(4÷13)=( )元”,用“算式设疑”引发学生认知上的冲突,使学生欲罢不能,在学习行为中遇到障碍时,让学生观察之前的5个算式,引导提出“被除数和除数是怎样变化的?”“商在什么情况下会不变?”等数学问题,明确学习目标,起到目标定向的作用。

  第二环节:分析问题,总结规律

  在这一环节中,我安排了三个步骤,先让学生自主发现规律,然后验证规律,最后是深化理解规律。

  首先引导学生观察故事情境中的前5个算式,以“240÷40=6”为标准,观察其余算式中的被除数与除数的“变”,并将他们板书:

  240÷40=6

  480÷80=(240×2)÷(40×2)=6

  4800÷800=(240×20)÷(40×20)=6

  60÷10=(240÷4)÷(40÷4)=6

  24÷4=(240÷10)÷(40÷10)=6

  变 不变

  接着让学生分组讨论,单组同学探究被除数和除数同时扩大相同倍数的情况,双组同学研究被除数和除数同时缩小相同倍数的情况,再由集体概括出“商不变性质”,同时强调“同时”、“0除外”来完善概念。当然,根据不完全归纳提出的猜想不完全可靠,而对小学生来将,对提出的假设也只能另举例子来检验。于是,我通过让学生写例子验证,以培养学生的科学思想方法。最后我针对学生易错、易漏之处让学生通过“判一判”、“填一填”等即时练习深入理解规律。

  判一判

  350÷50=(350÷10)÷(50÷10)

  75÷25=(75×4)÷(25×4)

  360÷90=(360+10)÷(90+10)

  91÷13=(91×2)÷(13×3)

  填一填

  200÷40=(200×4)÷(400× )

  =(200○ )÷(40÷5)

  =(200×7) ÷( ○ )

  = ÷50

  =20÷

  第三环节:运用规律,解决问题

  在这一环节主要是运用“商不变性质”来解决“3600÷600=”等被除数、除数末尾同时有0的除法,让学生所有学用,在口算是寻找最佳方法,提高口算速度。

  第四环节:巩固练习,扩展应用

  共三道练习,第一道是口算,让学生用今天学过的知识进行简算,其中象“7500÷50=”等学生易错的题目,通过学生提醒学生的方式,提醒学生在简算时,被除数和除数末尾要去掉相同个数的0。

  第二道练习是解决课刚开始时狐老六提出的问题:烧饼每个:(24÷13)÷(4÷13)=( )元。

  第三道练习属于开放性练习:240÷40=(200○ )÷(40○ )拓展学生思维空间,从不同角度、不同类型、不同形式分析问题,解决问题,发展学生创新思维。

  第五环节:归纳总结,完善认知

  通过询问“你有什么收获?”“这些收获主要通过什么方式获得?”进一步系统完善认知。

  第六环节:拓展延伸,孕伏新知

  简便计算 2000÷125=

热门文章