欢迎来到原中小学教育资源网!

五年数学下册《找规律》教学反思范文

教学反思 时间:2019-05-08 我要投稿
【www.ruiwen.com - 教学反思】

  作为以“找规律”为课题的数学课,要找的规律是什么?研读教材以及相应的教师用书,我理解了教材的编写意图:本课教学把图形沿着一个方向平移,根据平移的次数推算被该图形覆盖的总次数。其实平移比规律更重要,只要有了平移,就有了规律。通过教学,进一步提升学生探索规律的意识和水平,提高从数学角度认识和解释生活现象的能力。

  我在研读教材时发现:方框按顺序平移,体会对应关系,是更为本质的规律。 怎样找规律呢?也许,我们更多地关注找怎样的规律,其实,我们更需要在“找”上做文章。找规律的教学价值与重点是在“找”的过程中。学生有哪些关于这节课的学习的经验可以支撑他们这节课的学习过程呢?

  研读教材,以例题中第一个问题为例,这道题陈述的内容也就是:从10个数中,每次框出相邻的两个数,有多少种不同的框法?我感觉,例1设计的问题,是用探索有多少个不同的和的问题,引入可以框住多少个相邻两个自然数,但这样的转化,对于大多数学生来说,难度还是比较大的,好像在这个转折点上,不少学生都绕不过弯来。于是我直接从最简单的掰手指做铺垫教学,让学生理解相邻,如何掰相邻的两个手指。然后设计悬念400个手指并排怎么办?引出课题。从这节课让我深深明白:智慧的培育,需要建立在学生原有的知识经验基础之上,让学生在原有的基础上得到发展。其后的设计,我又想怎样过渡到像例题这样的“框数字”问题呢?眼睛突然一亮,就再利用10个手指进行教学。通过学生已有的经验利用10个手指进行教学。利用10个手指进行教学。得出9种方法,再通过平移,给学生的示范作用。而没有教师继续框3个、4个等,接着把框更多的数字的情况交给学生探究,放手让学生去发现,给学生学习的机会。为了不让学生发现表面的数字规律,我特意打乱数字的顺序,有意让学生真正的去发现总数、要框的数、每次框的个数和共有几种方法的关系或规律。学生交流,他们的发现也都在我的预料之中。接着让学生尽情的交流,然后小结规律。

  接下来,在10张数字卡片增加5张,每次框几张各有几组,先设计平移了几次,共有几组,弄清平移和共有几组的关系。其后总数增加都100个、400个,教学进入了**,在这里解决400个手指相邻的两个为一组的问题。学生以为我都会了,甚至总数增加到一万我也会,就在这时来个360度的转弯,只出现5~15个数字,学生一时愣了,我马上追问:如果我请个同学回答,他可能会在那里出问题?引出总数变了,总数并不是最后一个数。

  其后设计了生活问题,主要在小方和小英坐在礼堂的那一题, 连续设计了3个问题,其中如果14个座位围成圈形,学生自觉议论开来,教师再次利用卡片围成圈形,让学生直观思维。紧接着,“那个信息可以不要”“为什么要把13乘2?”最后的请假问题,难了!不是从1号开始请假,而是从5号开始请假,再次安排给予时间,交流、讨论。整节课没有将规律作板书,也没有规律公式化,更不强求学生一定要按算式来解答。事实上,学生在此即提出算法。有学生用“算”的方法,这是比较抽象的。如果没有形象支撑,我觉得学生难以理解,也许最后就演变为套模式解题,生在探索问题答案的过程中,往往总结出“算法”,这是否意味着学生思维的进一步抽象?这是否标志着学生新的重要的进步?为什么学生对这类问题的求解会归结为某种算法的应用?学生为何会思考“算法”?是否是因为学生潜意识中存在着数学问题是需要计算作出解答的潜在观念? “算法”的抽象,应建立在形象的模型的基础之上。因而我在课堂上着重引导学生建构数据排列、再框出相关的数的解决问题的模型。数形结合,帮助学生形象地理解一共有多少种框法,与框内的第一个数对应。解决这样的问题,我觉得对学生来说,应是形象思维与抽象思维齐头并进。

热门文章