实用文档>轴对称教学设计

轴对称教学设计

时间:2024-07-15 02:47:07

轴对称精品教学设计

轴对称精品教学设计

轴对称精品教学设计

  课题:12.1.1 轴对称(一)

  目标:

  1、在生活实例中认识轴对称图.

  2、分析轴对称图形,理解轴对称的概念.

  重点:

  轴对称图形的概念.

  教学难点:

  能够识别轴对称图形并找出它的对称轴.

  教学过程

  一、新课引入

  我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐. 轴对称是对称中重要的一种,从这节课开始,我们来学习第十四章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.

  二、新课讲解:

  出示课本的图片,观察它们都有些什么共同特征.

  这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.

  小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.

  我们的黑板、课桌、椅子等.

  我们的身体,还有飞机、汽车、枫叶等都是对称的.

  如课本的图14.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图14.1.1中的图形,你能发现它们有什么共同的特点吗?

  窗花可以沿折痕对折,使折痕两旁的部分完全重合.不仅窗花可以沿一条直线对折,使直线两旁重合,上面图14.1.1中的图形也可以沿一条直线对折,使直线两旁的部分重合.

  结论:如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.

  了解了轴对称图形及其对称轴的概念后,我们来做一做.

  取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.

  结论:位于折痕两侧的图案是对称的,它们可以互相重合.

  由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.

  接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。

  下列各图,你能找出它们的对称轴吗?

  结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有无数条对称轴;图(4)有两条对称轴;图(5)有七条对称轴.

  (1) (2) (3) (4) (5)

  展示挂图,大家想一想,你发现了什么?

  像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

  随堂练习

  (一)课本P117练习 (二)P118练习

  三、课堂小结:

  这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.

  四、作业

  (一)课本习题14.1─1、2、6、7、8题.

  课后作业:

  课本P118思考.

  成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?

  过程:在硬纸板上画两个成轴对称的图形,再用剪刀将这两个图形剪下来看是否重合.再在硬纸板上画出一个轴对称图形,然后将该图形剪下来,再沿对称轴剪开,看两部分是否能够完全重合. 结论:成轴对称的两个图形全等.如果把一个轴对称图形沿对称轴分成两个图形,这两个图形全等,并且也是成轴对称的.

  轴对称是说两个图形的位置关系,而轴对称图形是说一个具有特殊形状的图形.

  轴对称的两个图形和轴对称图形,都要沿某一条直线折叠后重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.

  课题:12.1.2 轴对称(二)

  教学目标:

  1、了解两个图形成轴对称性的性质,了解轴对称图形的性质.

  2、探究线段垂直平分线的性质.

  3、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.

  教学重点:

  1.轴对称的性质.

  2.线段垂直平分线的性质.

  教学难点:

  体验轴对称的特征.

  教学过程:

  一、新课引入:

  上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,什么样的图形是轴对称图形呢?

  今天继续来研究轴对称的性质.

  二、新课讲解:

  观看投影并思考.

  如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,线段AA′、BB′、CC′与直线MN有什么关系?

  图中A、A′是对称点,AA′与MN垂直,BB′和CC′也与MN垂直.

  AA′、BB′和CC′与MN除了垂直以外还有什么关系吗?

  △ABC与△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN对折后,点A与A′重合,于是有AP=A′P,∠MPA=∠MPA′=90°.所以AA′、BB′和CC′与MN除了垂直以外,MN还经过线段AA′、BB′和CC′的中点.

  对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.

  自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.

  我们可以看出轴对称图形与两个图形关于直线对称一样,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.

  归纳图形轴对称的性质:

  如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.

  下面我们来探究线段垂直平分线的性质.

  [探究1]

  如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,…是L上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?

  1.用平面图将上述问题进行转化,先作出线段AB,过AB中点作AB的垂直平分线L,在L上取P1、P2、P3…,连结AP1、AP2、BP1、BP2、CP1、CP2…

  2.作好图后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2…讨论发现什么样的规律.

  探究结果:

  线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,…

  证明.

  证法一:利用判定两个三角形全等.

  如下图,在△APC和△BPC中,

  △APC≌△BPC PA=PB.

  证法二:利用轴对称性质.

  由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,因此它们也是相等的.

  带着探究1的结论我们来看下面的问题.

  [探究2]

  如右图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?

  活动:

  1.用平面图形将上述问题进行转化.作线段AB,取其中点P,过P作L,在L上取点P1、P2,连结AP1、AP2、BP1、BP2.会有以下两种可能.

  2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件?

  探究过程:

  1.如上图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L与AB不垂直.

  2.如上图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB重合.当AP2=BP2时,亦然.

  探究结论:

  与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.也就是说在[探究2]图中,只要使箭端到弓两端的端点的距离相等,就能保持射出箭的方向与木棒垂直.

  [师]上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.

  随堂练习

  课本P121练习 1、2.

  三、课堂小结

  这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.

  四、课后作业

  (一)课本习题14.1─3、4、9题.

  课题12.2 轴对称变换

  教学目标:

  1、通过实际操作,了解什么叫做轴对称变换.

  2、如何作出一个图形关于一条直线的轴对称图形.

  教学重点:

  1、轴对称变换的定义.

  2、能够按要求作出简单平面图形经过轴对称后的图形.

  教学难点:

  1、作出简单平面图形关于直线的轴对称图形.

  2、利用轴对称进行一些图案设计.

  教学过程:

  一、新课引入:

  在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.

  将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,得到的两个图案是关于折痕成轴对称的图形.

  准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,位于折痕两侧的墨迹图案也是对称的.

  这节课我们就是来作简单平面图形经过轴对称后的图形.

  二、新课讲解:

  由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.

  类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.

  对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.

  下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.

  结论:由一个平面图形呆以得到它关于一条直线L对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;

  连结任意一对对应点的线段被对称轴垂直平分.

  我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.

  成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.

  取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.

  (1)在你所得的花边中,相邻两个图案有什么关系?相间的两个图案又有什么关系?说说你的理由.

  (2)如果以相邻两个图案为一组,每一组图案之间有什么关系?三个图案为一组呢?为什么?

  (3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.

  注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.

  随堂练习:

  (一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).

  (1)猜一猜,将纸打开后,你会得到怎样的图形?

  (2)这个图形有几条对称轴?

  (3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?

  答案:(1)轴对称图形.

  (2)这个图形至少有3条对称轴.

  (3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,打开即可得到一个至少含有5条对称轴的轴对称图形.

  三、课堂小结

  本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.

  动手并思考

  (一)如下图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.

  (1)你会得怎样的图案?先猜一猜,再做一做.

  (2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.

  (3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,展开后结果又会怎样?为什么?

  (4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?

  答案:(1)得到一个有2条对称轴的图形.

  (2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)中的图案一定有2条对称轴.

  (3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.

  (4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,剪出的图案至少有4条对称轴.

  (二)自己设计并制作一个花边.

  四、作业:

  如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.

  过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.

  结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.

  “十字”可以折叠两次,剪出它的四分之一即可.

  课题:12.2 .2 用坐标表示轴对称

  教学目标:

  在平面直角坐标系中,确定轴对称变换前后两个图形中特殊点的位置关系,再利用轴对称的性质作出成轴对称的图形

  教学重点:

  用坐标表示轴对称

  教学难点

  利用转化的思想,确定能代表轴对称图形的关键点

  教学过程:

  一、新课引入:

  复习轴对称图形的有关性质

  二、新课讲解:

  1、学生探索:

  点(x,y)关于x轴对称的点的坐标(x,-y);点(x,y)关于y轴对称的点的坐标(-x,y);点 (x,y)关于原点对称的点的坐标(-x,-y)

  2、例3 四边形ABCD的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形ABCD关于x轴和y轴对称的图形.

  (1)归纳:与已知点关于y 轴或x轴对称的点的坐标的规律;

  (2)学生画图

  (3)对于这类问题,只要先求出已知图形中的一些特殊点的对应点的坐标,描出并顺次连接这些特殊点,就可以得到这个图形的轴对称图形.

  3、探究问题

  分别作出△PQR关于直线x=1(记为m)和直线y=-1(记为n)对称的图形,你能发现它们的对应点的坐标之间分别有什么关系吗?

  (1)学生画图,由具体的数据,发现它们的对应点的坐标之间的关系

  (2)若△P Q R 中P (x ,y )关于x=1(记为m)轴对称的点的坐标P (x ,y ) ,

  则 ,y = y .

  若△P Q R 中P (x ,y )关于y=-1(记为n)轴对称的点的坐标P (x ,y ) ,

  则x = x , =n.

  训练:课本135页的第1~3题

  三、课堂小结:

  关于Y轴对称和关于X轴对称的两点的坐标有什么特点?

  四、作业:课本136页的第5~7题

  课题:12.3.1.1 等腰三角形

  教学目标:

  1、等腰三角形的概念.

  2、等腰三角形的性质.

  3、等腰三角形的概念及性质的应用.

  教学重点:

  1、等腰三角形的概念及性质.

  2、等腰三角形性质的应用.

  教学难点:

  等腰三角形三线合一的性质的理解及其应用.

  教学过程:

  一、新课引入:

  在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

  有的三角形是轴对称图形,有的三角形不是.

  问题:那什么样的三角形是轴对称图形?

  满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

  我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

  二、新课讲解:

  要求学生通过自己的思考来做一个等腰三角形.

  作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

  等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

  思考:

  1.等腰三角形是轴对称图形吗?请找出它的对称轴.

  2.等腰三角形的两底角有什么关系?

  3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

  4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

  结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

  要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

  沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

  由此可以得到等腰三角形的性质:

  1.等腰三角形的两个底角相等(简写成“等边对等角”).

  2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

  由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

  如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

  所以△BAD≌△CAD(SSS).

  所以∠B=∠C.

  ]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

  所以△BAD≌△CAD.

  所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

  [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

  求:△ABC各角的度数.

  分析:

  根据等边对等角的性质,我们可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

  再由三角形内角和为180°,就可求出△ABC的三个内角.

  把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

  解:因为AB=AC,BD=BC=AD,

  所以∠ABC=∠C=∠BDC.

  ∠A=∠ABD(等边对等角).

  设∠A=x,则

  ∠BDC=∠A+∠ABD=2x,

  从而∠ABC=∠C=∠BDC=2x.

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°.

  在△ABC中,∠A=35°,∠ABC=∠C=72°.

  [师]下面我们通过练习来巩固这节课所学的知识.

  随堂练习

  (一)课本P141练习 1、2、3.

  (二)阅读课本P138~P140,然后小结.

  三、课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.

  四、作业

  (一)课本P147─1、3、4、8题.

  参考练习

  一、选择题

  1.如果△ABC是轴对称图形,则它的对称轴一定是( )

  A.某一条边上的高; B.某一条边上的中线

  C.平分一角和这个角对边的直线; D.某一个角的平分线

  2.等腰三角形的一个外角是100°,它的顶角的度数是( )

  A.80° B.20° C.80°和20° D.80°或50°

  答案:1.C 2.C

  二、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm.

  求这个等腰三角形的边长.

  解:设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得

  2(x+2)+x=16.

  解得x=4.

  所以,等腰三角形的三边长为4cm、6cm和6cm.

  课题:12.3.1.1 等腰三角形(二)

  教学目标:

  1、理解并掌握等腰三角形的判定定理及推论

  2、能利用其性质与判定证明线段或角的相等关系.

  教学重点:

  等腰三角形的判定定理及推论的运用

  教学难点

  正确区分等腰三角形的判定与性质.能够利用等腰三角形的判定定理证明线段的相等关系.

  教学过程:

  一、新课引入:

  复习等腰三角形的性质

  二、新课讲解:

  出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.

  学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.

  1.由性质定理的题设和结论的变化,引出研究的内容??在△ABC中,苦∠B=∠C,则AB= AC吗?

  作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

  2.引导学生根据图形,写出已知、求证.

  2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).

  强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.

  4.引导学生说出引例中地质专家的测量方法的根据.

  例题与练习

  1.如图2

  其中△ABC是等腰三角形的是 [ ]

  2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).

  ②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).

  ③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.

  ④若已知 AD=4cm,则BC______cm.

  3.以问题形式引出推论l______.

  4.以问题形式引出推论2______.

  例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

  分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

  练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?

  (2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

  三、课堂小结

  1.判定一个三角形是等腰三角形有几种方法?

  2.判定一个三角形是等边三角形有几种方法?

  3.等腰三角形的性质定理与判定定理有何关系?

  4.现在证明线段相等问题,一般应从几方面考虑?

  四、作业

  阅读教材

  教材第150页第12题

  课题:12.3.2 等边三角形(一)

  教学目的:

  1、使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

  2、熟识等边三角形的性质及判定.

  3、通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。

  教学重点:

  等腰三角形的性质及其应用。

  教学难点:

  简洁的逻辑推理。

  教学过程:

  一、新课引入:

  1.叙述等腰三角形的性质,它是怎么得到的?

  等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。

  等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。

  2.若等腰三角形的两边长为3和4,则其周长为多少?

  二、新课讲解:

  在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。

  等边三角形具有什么性质呢?

  1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

  2.你能否用已知的知识,通过推理得到你的猜想是正确的?

  等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。

  3.上面的条件和结论如何叙述?

  等边三角形的各角都相等,并且每一个角都等于60°。

  等边三角形是轴对称图形吗?如果是,有几条对称轴?

  等边三角形也称为正三角形。

  例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。

  分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

  问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?

  问题2:求∠1是否还有其它方法?

  练习巩固:

  1.判断下列命题,对的打“√”,错的打“×”。

  a.等腰三角形的角平分线,中线和高互相重合( )

  b.有一个角是60°的等腰三角形,其它两个内角也为60°( )

  2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。

  三、课堂小结:

  由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

  四、作业

  1.课本P147─7,9

  2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,

  ∠EOD的度数。

  课题:12.3.2.2 等边三角形(二)

  教学目标:

  1、掌握等边三角形的性质和判定方法.

  2、培养分析问题、解决问题的能力.

  教学重点:

  等边三角形的性质和判定方法.

  教学难点:

  等边三角形性质的应用

  教学过程:

  一、新课引入:

  回顾上节课讲过的等边三角形的有关知识

  1.等边三角形是轴对称图形,它有三条对称轴.

  2.等边三角形每一个角相等,都等于60°

  3.三个角都相等的三角形是等边三角形.

  4.有一个角是60°的等腰三角形是等边三角形.

  其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

  二、新课讲解:

  例题与练习

  1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

  ①在边AB、AC上分别截取AD=AE.

  ②作∠ADE=60°,D、E分别在边AB、AC上.

  ③过边AB上D点作DE∥BC,交边AC于E点.

  2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

  分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

  三、课堂小结

  1、等腰三角形和性质

  2、等腰三角形的条件

  四、布置作业

  1.教科书第147页练习1、2

  2.选做题:

  (1)教科书第150页习题14.3第ll题.

  (2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

  课题:12.3.2.1 等边三角形(三)

  教学目标:

  1、掌握等边三角形的性质和判定方法.

  2、培养分析问题、解决问题的能力.

  教学重点:

  等边三角形的性质和判定方法.

  教学难点:

  等边三角形性质的应用

  教学过程

  一、新课引入:

  复习等腰三角形的判定与性质

  二、新课讲解:

  1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等

  2.等边三角形的判定:

  三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;

  在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

  注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.

  3.由学生解答课本148页的例子;

  4.补充:已知如图所示, 在△ABC中, BD是AC边上的中线, DB⊥BC于B,

  ∠ABC=120o, 求证: AB=2BC

  分析 由已知条件可得∠ABD=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.

  B

  证明: 过A作AE∥BC交BD的延长线于E

  ∵DB⊥BC(已知)

  ∴∠AED=90o (两直线平行内错角相等)

  在△ADE和△CDB中

  ∴△ADE≌△CDB(AAS)

  ∴AE=CB(全等三角形的对应边相等)

  ∵∠ABC=120o,DB⊥BC(已知)

  ∴∠ABD=30o

  在Rt△ABE中,∠ABD=30o

  ∴AE= AB(在直角三角形中,如果一个锐角等于30o,

  那么它所对的直角边等于斜边的一半)

  ∴BC= AB 即AB=2BC

  点评 本题还可过C作CE∥AB

  5、训练:如图所示,在等边△ABC的边的延长线上取一点E,以CE为边作等边△CDE,使它与△ABC位于直线AE的同一侧,点M为线段AD的中点,点N为线段BE的中点,求证:△CNM是等边三角形.

  分析 由已知易证明△ADC≌△BEC,得BE=AD,∠EBC=∠DAE,而M、N分别为BE、AD的中点,于是有BN=AM,要证明△CNM是等边三角形,只须证MC=CN,∠MCN=60o,所以要证△NBC≌△MAC,由上述已推出的结论,根据边角边公里,可证得△NBC≌△MAC

  证明:∵等边△ABC和等边△DCE,

  ∴BC=AC,CD=CE,(等边三角形的边相等)

  ∠BCA=∠DCE=60o(等边三角形的每个角都是60)

  ∴∠BCE=∠DCA

  ∴△BCE≌△ACD(SAS)

  ∴∠EBC=∠DAC(全等三角形的对应角相等)

  BE=AD(全等三角形的对应边相等)

  又∵BN= BE,AM= AD(中点定义)

  ∴BN=AM

  ∴△NBC≌△MAC(SAS)

  ∴CM=CN(全等三角形的对应边相等)

  ∠ACM=∠BCN(全等三角形的对应角相等)

  ∴∠MCN=∠ACB=60o

  ∴△MCN为等边三角形(有一个角等于60o的等腰三角形是等边三角形)

  小结

  1.本题通过将分析法和综合法并用进行分析,得到了本题的证题思路,较复杂的几何问题经常用这种方法进行分析

  2.本题反复利用等边三角形的性质,证得了两对三角形全等,从而证得△MCN是一个含60o角的等腰三角形,在较复杂的图形中,如何准确地找到所需要的全等三角形是证题的关键.

  三、课堂小结:

  小结本节知识

  四、作业:

  平行四边形的性质(1)

  第四 四边形性质探索

  总时:12时 使用人:

  备时间:开学第一周 上 时间:第六周

  第1时:4、1 平行四边形的性质 (1)

  目标:

  1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;

  2.索并掌握平行四边形的性质,并能简单应用;

  3.在探索活动过程中发展学生的探究意识。

  重点:平行四边形性质的探索。

  教学难点:平行四边形性质的理解。

  教学准备:多媒体

  教学过程

  第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)

  1.小组活动一

  内容:

  问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

  (1)你拼出了怎样的四边形?与同桌交流一下;

  (2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

  2.小组活动二

  内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?

  第二环节 探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)

  小组活动3:

  用 一张半透明的纸复制你刚才画的平行四边形,并将复制 后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?

  (1)让学生动手操作、复制、旋转 、观察、分析;

  (2)学生交流、议论;

  (3)教师利用多媒体展示实践的过程。

  第三环节 推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)

  实践 探索内容

  (1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

  (2)可以通过推理证明这个结论,如图连结AC。

  ∵ 四边形ABCD是平行四边形

  ∴AD // BC, AB // CD

  ∴ ∠1=∠2,∠3=∠4

  ∴ △AB C和△CDA中

  ∠2=∠1

  AC=C A

  ∠3=∠4

  ∴ △ABC≌△CDA(ASA)

  ∴ AB=DC, AD=CB,∠D=∠B

  又∵∠1=∠2

  ∠3=∠4

  ∴∠1+∠3=∠2+∠4

  即∠BAD=∠DCB

  第四环节 应用巩固 深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)

  1.活动内容:

  (1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?

  A(学生思考、议论)

  B总结归纳:可以确定其它三个内角的度数。

  由平行四边形对 边分边平行 得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

  (2)练一练(P99随堂练习)

  练1 如图:四边形ABCD是平行四边形。

  (1)求∠ADC、∠BCD度数

  (2)边AB、BC的度数、长度。

  练2 四边形ABCD是平行四边形

  (1)它的四条边中哪些 线段可以通过平移相到得到?

  (2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。

  归 纳:平行四边形的性质:平行四边形的对角线互相平分。

  第五环节 评价反思 概括总结(8分钟,学生踊跃谈感受和收获)

  活动内容

  师生相互交流、反思、总结。

  (1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

  (2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?

  (3)本节学习到了什么?(知识上、方法上)

  考一考:

  1. ABCD中,∠B=60°,则∠A= ,∠C= ,∠D= 。

  2. ABCD中,∠A比∠B大20°,则∠C= 。

  3. ABCD中,AB=3,BC=5,则AD= CD= 。

  4. ABCD中,周长为40cm,△ABC周长为25,则对角线AC=( )cm。

  布置作业

  本习题4.1

  A组(学优生)1 、2

  B组(中等生)1、2

  C组(后三分之一生)1、2

  教学反思

  得到直角三角形吗

  第一章 勾股定理

  2.能得到直角三角形吗

  一、学生起点分析

  学生已经了勾股定理,并在先前其他内容学习中已经积累了一定的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?反之,满足什么条件的两直线是平行?因而, 本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中,可能要用到反证等思 路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。

  二、 学习任务分析

  本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。任务有:探索勾股定理的逆定理,并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定目标:

  ● 知识与技能目标

  1.理解勾股定理逆定理的具体内容及勾股数的概念;

  2.能根据所给三角形三边的条件判断三角形是否是直角三角形。

  ● 过程与方法目标

  1.经历一般规律的探索过程,发展学生的抽象思维能力;

  2.经历从实验到验证的过程,发展学生的数学归纳能力。

  ● 情感与态度目标

  1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;

  2.在探索过程中体验成功的喜悦,树立学习的自信心。

  教学重点

  理解勾股定 理逆定理的具体内容。

  三、教法学法

  1.教学方法:实验 —猜想—归纳—论证

  本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验,但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:

  (1)从创设问题情景入手,通过 知识再现,孕育教学过程;

  (2)从学生活动出发,通过以旧引新,顺势教学过程;

  (3)利用探索,研究手段,通过思维深入,领悟教学过程。

  2.课前准备

  教具:教材、电脑、多媒体课件。

  学具:教材、笔记本、课堂练习本、文具。

  四、教学过程设计

  本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。

  第一环节:情境引入

  内容:

  情境:1.直角三角形中,三边长度之间满足什么样的关系?

  2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?

  意图:

  通过情境的创设引入新课,激发学生探究热情。

  效果:

  从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。

  第二环节:合作探究

  内容1:探究

  下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问 题:

  1.这三组数都满足 吗?

  2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。

  意图:

  通过学生的合作探究,得出“若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形”这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律。

  效果:

  经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。

  从上面的分组实验很容易得出如下结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

  内容2:说理

  提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?

  意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:

  如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

  满足 的三个正整数,称为勾股数。

  注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。[来源:学。科。网]

  活动3:反思总结

  提问:

  1.同学们还能找出哪些勾股数呢?

  2.今天的结论与前面学习勾股定理有哪些异同呢?

  3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?

  4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?

  意图:进一步让学生认识该定理与勾股定理之间的关系

  第三环节:小试牛刀

  内容:

  1.下列哪几组数据能作为直角三角形的三边长?请说明理由。

  ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一个三角形的三边长分别是 ,则这个三角形的面积是( )

  A 250 B 150 C 200 D 不能确定

  解答:B

  3.如图1:在 中, 于 , ,则 是( )

  A 等腰三角形 B 锐角三角形

  C 直角三角形 D 钝角三角形

  解答:C

  4.将直角三角形的三边扩大相同的倍数后, (图1)

  得到的三角形是( )

  A 直角三角形 B 锐角三角形

  C 钝角三角形 D 不能确定

  解答:A

  意图:

  通过练习,加强对勾股定理及勾股定理逆定理认识及应用

  效果

  每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。

  第四环节:登高望 远

  内容:

  1.一个零件的形状如图2所 示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?

  解答:符合要求 , 又 ,

  2 .一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90°,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?

  解答:由题意画出相应的图形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 ∴△ABC是Rt△

  答:船转弯后,是沿正西方向航行的。

  意图:

  利用勾股定理逆定理解决实际问题,进一步巩固该定理。

  效果:

  学生能用自己的语言表达清楚解决问题的过程 即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。

  第五环节:巩固提高

  内容:

  1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。

  解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF

  2.如图5,哪些是直角三角形,哪些不是,说说你的理由?

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意图:

  第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。

  效果:

  学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。

  第六环节:交流小结

  内容:

  师生相互交流总结出:

  1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;

  2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的 过程,同时遵循由“特殊→一般→特殊”的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。

  意图:

  鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。

  效果:

  学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。

  第七环节:布置作业

  课本习题1.4第1,2,4题。

  五、教学反思:

  1.充分尊重教材,以勾股定理的逆向思维模式引入“如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形”的问题;充分引用教材中出现的例题和练习。

  2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律。

  3.在利用今天所学知识解决实际问题时,引导学生善于对 公式变形,便于简便计算。

  4.注重对学习新知理解应用偏困难的学生的进一步关注。

  5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。

  由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。

  附:板书设计

  能得到直角三角形吗

  情景引入———— 小试牛刀: 登高望远—————

  合作探究———— 1.———— —— 1. ——————

  2.—————— 2.——————

  3.—————— 课后作业:

  解二元一次方程组

  第七 二元一次方程组

  总时:8时 使用人:

  备时间:第九周 上时间:第十三周

  第2时:7、2解二元一次方程组(1)

  教学目标

  知识与技能:会用代入消元法解二元一次方程组.

  过程与方法:了解 “消元”思想,初步体会数学研究中“化未知为已知”的化归思想.

  情感态度与价值观:让学生经历自主探索过程 ,化未知为已知,从中获得成功的体验,从而激发学生的学习兴趣.

  教学重点

  用代入消元法解二元一次方程组.

  教学难点

  在解题过程中体会“消元”思想和“化未知为已知”的化归思想.

  教学准备:多媒体

  教学过程:

  第一环节:情境引入(5分钟,学生理解题意,小组讨论解决方案)

  内容:

  教师引导学生共同回忆上一节讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.

  设他们中有x个成人,y个儿童,我们得到了方程组 成人和儿童到底去了多少人呢?在上一节的“做一做”中,我们通过检验 是不是方程x+y=8和方程5x+3y=34的解,从而得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组的解的定义,得出 是方程组 的解.所以成人和儿童分别去了5人和3人.

  提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中却好我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?

  第二环节:探索新知(10分钟,教师引导学生分析方程中的数量关系,找到方法)

  内容:回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题? (由学生独立思考解决,教师注意指导学生规范表达)

  解:设去了x个成人,则去了(8-x)个儿童,根据题意,得:

  5x+3(8-x)=34.

  解得:x=5.

  将x=5代入8-x=8-5=3.

  答:去了5个成人, 3个儿童.

  在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?

  (先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)

  1.列二元一次方程组设 有两个未知数:x个成人, y个儿童.列一元一次方程只设了一个未知数:x个成人,儿童去的个数通过去的总人数与去的成人数相比较,得出(8-x)个.因此y应该等于(8-x).而由二元一次方程组的一个方程x+y=8,根据等式的性质可以推出y=8-x.

  2.发现一元一次方程中5x+3(8-x)=34与方 程组中的第二个方程5x+3y=34相类似,只需把5x+3y=34中的“y”用“(8-x)”代替就转化成了一元一次方程.

  教师引导学生发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识(二元一次方程组)转化为旧知识(一元一次方程)便可.

  (由学生回答)上一节我们就已知道方程组中相同的字母表示的是同一个未知量.所以将 中的①变形,得y=8-x ③,我们把y=8-x代入方程②,即将②中的y用(8-x)代替,这样就有5x+3(8-x)=34.“二元”化成“一元”.

  教师总结:同学们很善于思考.这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.下面我们完整地解一下这个二元一次方程组.

  (教师把解答的详细过程板书在黑板上,并要求学生一起完成)

  解:

  由①得: . ③

  将③代入②得:

  解得: .

  把 代入③得: .

  所以 原方程组的解为:

  (提醒学生进行检验,即把求出的解代入原 方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有问题)

  下面我们试着用这种方法解答上一节的“谁的包裹多”的问题.

  (放手让学生用已经获取的经验去解决新的问题,由学生自己完成,让两个学生在黑板上规范的板书,教师巡视:发现学生的闪光点以及存在的问题并适时的加以辅导,以期学生在解答的过程中领会“代入消元法”的真实含义和“化归”的数学思想.)

  第三环节:巩固新知(10分钟,教师演示,学生理解、识记)

  内容:

  1例 解下列方程组:

  (1) (2)

  (根据学生的情况可以选择学生自己完成或教师指导完成)

  (1)解:将②代入①,得: .

  解得: .

  把 代入②,得: .

  所以原方程组的解为:

  (2)由②,得: . ③

  将③代 入①,得 : .

  解得: .

  将y=2代入③,得: .

  所以原方程组的解是

  (⑵题需先进行恒等变形,教师要鼓励学生通过自主探索与交流获得求解,在求解过程中学生消元的具体方 法可能不同,所以教学中不必强求解答过程的统一,但要提出如何选择将哪个方程恒等变形、消去哪个未知数能使运算较为简单.让学生在解题中进行思考)

  (教师在解完后要引导学生再次就解出的结果进行思考,判断它们是否是原方程组的解.促使学生进一步理解方程组解的含义以及学会检验方程组解的方法.)

  2思考总结:(教师根据学生的实际情况进行生与生、师与生之间的相互补充与评价,并提出下面的问题)

  ⑴给这种解方程组的方法取个什么名字好?

  ⑵上面解方程组的基本思路是什么?

  ⑶主要步骤有哪些?

  ⑷我们观察例题的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?

  (由学生分组讨论,教师深入参与 到学生 讨论中,发现学生在自主探索、讨论过程中的独特想法,请学生小组的代表回答或学生举手回答,其余学生可以补充,力求让学生能够回答出以下的要点,教师要板书要点,在学生回答时注意进行积极评价)

  1.在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用含其中一个未知数的代数式表示另一个未知数,然后代入另一个未变形的方程,从而由“二元”转化为“一元”,达到消元的目的.我们将这种方法叫代入消元法.

  2.解二元一次方程组的基本思路是消元,把“二元”变为“一元”.

  3.解上述方程组的步骤:

  第一步:在已知方程组的两个方程中选择 一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出.

  第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.

  第三步:解这个一元一次方程,得到一个未知数的值.

  第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个 未知数的值.

  第五步:把方程组的解表示出.

  第六步:检验(口算或笔算在草稿纸上进行),即把求得的解代入每一个方程看是否成立.

  4.用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.

  第四环节:练习提高(10分钟,学生独立完成,教师个别指导,全班交流)

  内容:

  1.教材随堂练习(在随堂练习中,可以鼓励学生通过自主探索与交流,各个学生消元的具体方法可能不同,可以不必强调解答过程统一.可能会出现整体代换的思想,若有条可以提出,为下一做点铺垫也可以)

  2.补充练习:用代入消元法解下列方程组:

  (1) (2) ⑶ (注意分数线有括号功能)

  第五环节:堂小结(5分钟,教师引导学生总结解方程的方法)

  内容:师生相互交流总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”; 解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出,并代入另一个方程中,从而消去一个未知数,化二元 一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程组的解.

  第 六环节:布置作业 习题7.2 A组(优等生)1、2

  B组(中等生)1

  C组(后三分之一生)1

  教学反思

  变化的“鱼”(1)

  第五 位置的确定

  总时:7时 使用人:

  备时间:第八周 上时间:第十周

  第6时:5、3变化的“鱼”(1)

  目标

  知识与技能

  1.经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力和数形结合意识。

  2.在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之 间的关系。

  过 程与方法

  1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

  情感态度与价值观

  1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

  2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

  3.通过“变化的鱼”,让学生体验数学活动充满着探索与创造。

  重点:

  经历图形坐标变化与图形的平移、轴对称、伸长、压缩之间关系的探索过程,发展学生的形象思维能力和数形结合意识。

  教学难点:

  由坐标的变化探索新旧图形之间的变化。

  教学准备:多媒体

  教学过程

  第一环节 创设问题情境,引入新(5分钟,学生动手找点)

  『师』:在前几节中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标。

  我们知道点的位置不同写出的坐标就不同,反过,不同的坐标确定不同的点。如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节中我们要研究的问题。

  练习:拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接 起。坐标是(0, 0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。

  『师』:你们画出的图形和我这里的图形(挂图)是否相同?

  『生』:相同。

  『师』:观察所得的图形,你们觉得它像什么?

  『生』:像“鱼”。

  『师』:鱼是营养价值极高的食物,大家 肯定愿意吃鱼,但上面的这条鱼太小了,下面我们把坐标适当地作些变化,这条鱼就能变大或变胖,即变化的鱼。(板书题)

  第二环节 探究新知:(20分钟,学生观察,小组合作,全班交流)

  例1 将上图中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),

  (4,-2),(0,0)做以下变化:

  (1)纵坐标保持不变,横坐标分别变成原的2倍,再将所得的点用线段依次连接起,所得的图案与原的图案相比有什么变化?

  (2)纵坐标保持不变,横坐标分别加3, 再将所得的点用线段依次连接起,所得的图案与原的图案相比有什么变化?

  『师』:先根据题意把变化前后的坐标作一对比。如下:

  (1)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)

  (0,0),(10,4),(6,0),(10,1),(10,-1),(6,0),(8,-2),(0,0)

  (2)(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)

  (3,0),(8,4),(6,0),(8,1),(8,-1),(6,0),(7,-2),(3,0)

  根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出。

  你们画出的图形与下面的图形相同吗?

  『生』:相同。

  『师』:这个图形与原的图形相比有什么变化呢?

  『生』:比原的鱼长了。

  『师』:将各点用线段依次连接起,所得图案与原图案相比,整条鱼横向拉长为原的的2倍。即鱼变长了。

  (师选一生的第(2)题的图对比)

  『师』:大家的图形和他画的是否相同?

  『生』:相同。

  『师』:这个图形和原的图形相比是变长了还是变胖了?

  『生』:没变。

  『师』:新的图案与原图案相比,鱼的形状、大小不变,整条鱼向右平移了3个长度单位。

  小结:从上面的两种变化情况看,当横坐标分别加3,纵坐标不变时,整个图案向右平移了3个单位;当横坐标分别变成原的2倍,纵坐标不变时,整条鱼被横向拉长为原的2倍。这两种情况都是横坐标变化,纵坐标不变,图形是被拉长或向右移动,当纵坐标发生变化,横坐标不变时,鱼会怎样变化呢?

  例2 将第一个图形中的点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)做如下变化:

  (1)横坐标保持不变,纵坐标分别乘-1,所得的图案与原的图案相比有什么变化?

  (2)横、纵坐标分别变成原的2倍,所得的图案与原的图案相比有什么变化?

  (指导学生先做第(1)题:描述坐标的变化,再画图)

  『师』:图形 应变成什么图形?

  『生』:图形和原图形相比,好像鱼沿x轴翻了个身。

  『师』:是的,所得的图案与原图案关于横轴成轴对称。

  (指导学生做第(2)题,方法同上 )

  『师』:图形应变成什么样了?

  『生』:所得的图案与原图案相比,形状不变、大小放大了一倍。

  『师』:即鱼长大长胖了。

  3. 分小组讨论:当坐标如何变化时,鱼就长大了;什么情况下,鱼就向右移动了;什么情况下,鱼就翻身了;什么情况下,鱼既长长又长胖 。

  『生』:(1)当横坐标同时加上一个相同的数,纵坐标不变时,鱼向右移动。

  (2)当横坐标变为原的2倍,纵坐标不变时,鱼长长了,没胖。

  (3)当横坐标不变,纵坐标分别乘以-1时,鱼翻身了,即后的鱼和原的鱼关于x轴对称。

  (4)当横、纵坐标分别变成原的2倍时 ,鱼既长长又长胖了。

  『师』:当坐标如何变化时,鱼就长胖了?当坐标如何变化时,鱼就关于原点对称了?当坐标如何变 化时,鱼就向上移动了?当坐标如何变化时,鱼就关于y轴成轴对称?

  『师』:以上我们对不同的情况进行了探索整理,也找到了规律,在以后的学习中大家要多思考,找规律。这样理解得深,学的知识比较牢固。

  第三环节 归纳结论(5分钟,教师引导学生总结)

  从上面的两种变化情况看,当横坐标分别加3,纵坐标不变时,整个图案向右平移了3个单 位;当横坐标分别变成原的2倍,纵坐标不变时,整条鱼被横向拉长为原的2倍。

  (1)当横坐标同时加上一个相同的数,纵坐标不变时,鱼向右移动。

  ( 2)当横坐标变为原的2倍,纵坐标不变 时,鱼长长了,没胖。

  (3)当横坐标不变,纵坐标分别乘以-1时, 鱼翻身了,即后的鱼和原的鱼关于x轴对称。

  (4)当横、纵坐标分别变成原的2倍时,鱼既长长又长胖了。

  第四环节 练习提高(8分钟,学生独立完成)

  (1)将右图中的各个点的纵坐标不变,横坐标都乘-1,与原图案相比,所得的图案有什么变化?

  (2)将右图中的各个点的横坐标不变,纵坐标都乘-1,与原图案相比,所得的图案有 什么变化?

  (3)将上图中各个点的横坐标都乘-2,纵坐标都乘-2,与原图形相比,所得的图案有什么变化?

  第五环节 堂小结(2分钟,教师提问,学生口答)

  平移:1.纵坐标不变,横坐标分别增加(减少)a个单位时,图形 平移 a个 单位;

  2.横坐标不变,纵坐标分别增加(减少) a个单位

  时,图形平移a个单位;

  缩放:1.纵坐标不变,横坐标分别变为原的a倍,图形为原的a倍(a>1)

  2.横坐标不变,纵坐标分别变为原的a倍,图形为原的a倍(a>1)

  3.横坐标与纵坐标同时变为原的a倍,图形为原的a倍(a>1)

  对称:1.纵坐标不变,横坐标分别乘-1,所得图形与原图形

  关于Y轴对称;

  2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关

  于 X轴对称;

  3.横坐标与纵坐标都乘-1,所得图形与原图形关于坐标原点中心对称。

  第六环节 布置作业

  习题5.6

  A组(优等生)1,2,3

  B组(中等生)1、2

  C组(后三分之一生)1

  教学反思

  勾股定理应用

  课题:2.7.1勾股定理的应用

  时间(日期、课时):

  教材分析:

  学情分析:

  教 学目标:

  能运用勾股定理及直角三角形的判定条件解决实际问题.

  在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值.

  教学准备

  《数学学与练》

  集体备课意见和主要参考资料

  页边批注

  教学过 程

  一.新课导入

  本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:

  一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流 .

  创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:底端也滑动 0.5m;如果梯子的顶端滑到地面 上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端 下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等);通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题 ,从中感受用数学的眼光审视客观世界的乐趣 .

  二.新课讲授

  问题一 在上面的情境中,如果梯子的顶端下滑 1m,那么梯子的底端滑动多少米?

  组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导.

  问题二 从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流.

  设计问题二促使学生能主动积 极地从数学的角度思考实际问题.教学中学生可能会有多种思考.比如,①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;②因为梯子顶端 下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法.

  3.例题教学

  课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题.通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智.

  三.巩固练习

  1.甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km.

  2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( ).

  (A)20cm (B)10cm (C)14cm (D)无法确定

  3.如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求这块草坪的面积.

  四.小结

  我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角 三角形中的任意两边就可以依据勾股定理求出第三边.从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要 依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程.

  板书设计

  作业设计

  补充习题2.6

  实数学案

  学习目标:

  1.知道无理数的真实存在,理解无理数的概念;

  2.知道实数和数轴上的点一一对应关系,掌握实数的分类.

  重点、难点:能准确判断一个数是有理数还是无理数.

  学习过程

  一.【预学提纲】初步感知、激发兴趣

  1.你能把 这个数对应的数轴上的点画出来吗?

  2. 是一个整数吗?

  3. 是一个分数吗?

  4.怎样的数是无理数?举出几个无理数.

  二.【预学练习】初步运用、生成问题

  1.任意写出0和1之间的两个无理数___________.

  2.实数-1.732, , ,0.121121112…, 中,无理数的个数有( )

  A.2个 B. 3个 C.4个 D.5个

  3.如图,数轴上点 表示的数可能是( )

  A. B. C. D.

  三.【新知探究】师生互动、揭示通法

  问题1. 把下列各数填入相应的集合内:

  , , 0. , , , , , , ,0.01001000100001……。

  (1)有理数集合{ }

  (2)无理数集合{ }

  (3)正实数集合{ }

  (4)负实数集合{ }

  四. 【解疑助学】生生互动、突出重点

  问题2. 已知 是有理数, 是无理数,请先化简下面的式子,再在相应的圆圈内选择你喜欢的数代入求值: .

  问题3. 满足下列条件的实数是否为无理数?为什么?

  (1)边长为2的正方形的对角线的长

  (2)边长为 的正方形的对角线的长

  (3)长为4,宽为3的长方形的对角线的一半的长

  (4)半径为1的圆的周长

  五.【变式拓展】能力提升、突破难点

  1.点M在数轴上与原点相距 个单位,则点M表示的实数为 ,数轴上到 的点距离为 的点所表示的数是 .

  2.估计 的值 ( )

  A.在3到4之间B.在4到5之间

  C.在5到6之间D.在6到7之间

  3.如图,数轴上表示1, 的对应点分别为A、B,且AB=AC,设点C所表示的数为x,

  求x的值.

  六.【回扣目标】学有所成、悟出方法

  1. 经历了用有理数估算 的探索过程,感受了 数学思想;

【轴对称教学设计】相关文章:

五年级《轴对称再认识(二)》教学教程设计(精选11篇)09-28

有关于轴对称教案03-20

《标牌设计》的教学设计03-14

旋转的教学设计02-16

《茶经》教学设计02-18

《国殇》教学设计12-11

《赛马》的教学设计05-21

国庆的教学设计03-19

《 It was there 》教学设计与说明03-19

映山红的教学设计03-19

用户协议