欢迎来到原中小学教育资源网!

初一上数学教学课件

教学课件 时间:2017-11-17 我要投稿
【www.ruiwen.com - 教学课件】

  数学教师,其首要任务是树立正确的数学观,积极地自觉地促进自己的观念改变,以实现由静态的,片面的、机械反映论的数学观向动态的,辩正的模式论的数学观的转变。特别是实现对上述问题的朴素的不自觉的认识向自觉认识的转化。

  初一上数学教学课件 例1

  一、知识结构

初一上数学教学课件

  二、重点、难点分析

  本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.

  1.平方差公式是由多项式乘法直接计算得出的:

初一上数学教学课件

  与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.

  2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.

  只要符合公式的结构特征,就可运用这一公式.例如

初一上数学教学课件

  3.关于平方差公式的特征,在学习时应注意:

  (1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.

  (2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).

  (3)公式中的和可以是具体数,也可以是单项式或多项式.

  (4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.

  三、教法建议

  1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力.

  2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即

  (a+b)(a-b)=a2+ab-ab-b2=a2-b2.

  这样得出平方差公式,并且把这类乘法的实质讲清楚了.

  3.通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),

  (1+2x)(1-2x)=12-(2x)2=1-4x2

  ↓ ↓ ↓ ↓ ↑ ↑

  (a + b)(a - b)=a2- b2.

  这样,学生就能正确应用公式进行计算,不容易出差错.

  另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.

  教学目标

  1.使学生理解和掌握平方差公式,并会用公式进行计算;

  2.注意培养学生分析、综合和抽象、概括以及运算能力.

  教学重点和难点

  重点:平方差公式的应用.

  难点:用公式的结构特征判断题目能否使用公式.

  教学过程设计

  一、师生共同研究平方差公式

  我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.

  让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:

  两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

  (当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)

  继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.

  在此基础上,让学生用语言叙述公式.

  二、运用举例  变式练习

  例1  计算(1+2x)(1-2x).

  解:(1+2x)(1-2x)

  =12-(2x)2

  =1-4x2.

  教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.

  例2  计算(b2+2a3)(2a3-b2).

  解:(b2+2a3)(2a3-b2)

  =(2a3+b2)(2a3-b2)

  =(2a3)2-(b2)2

  =4a6-b4.

  教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.

  课堂练习

  运用平方差公式计算:

  (l)(x+a)(x-a);    (2)(m+n)(m-n);

  (3)(a+3b)(a-3b);   (4)(1-5y)(l+5y).

  例3  计算(-4a-1)(-4a+1).

  让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.

  解法1:(-4a-1)(-4a+1)

  =[-(4a+l)][-(4a-l)]

  =(4a+1)(4a-l)

  =(4a)2-l2

  =16a2-1.

  解法2:(-4a-l)(-4a+l)

  =(-4a)2-l

  =16a2-1.

  根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.

  初一上数学教学课件 例2

  教学目的:

  (一)知识点目标:

  1.了解正数和负数是怎样产生的。

  2.知道什么是正数和负数。

  3.理解数0表示的量的意义。

  (二)能力训练目标:

  1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

  2.会用正、负数表示具有相反意义的量。

  (三)情感与价值观要求:

  通过师生合作,联系实际,激发学生学好数学的热情。

  教学重点:知道什么是正数和负数,理解数0表示的量的意义。

  教学难点:理解负数,数0表示的量的意义。

  教学方法:师生互动与教师讲解相结合。

  教具准备:地图册(中国地形图)。

  教学过程:

  引入新课:

  1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好?

  内容:老师说出指令:

  向前两步,向后两步;

  向前一步,向后三步;

  向前两步,向后一步;

  向前四步,向后两步。

  如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

  [师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

  讲授新课:

  1.自然数的产生、分数的产生。

  2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

  3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

  举例说明:3、2、0.5、 等是正数(也可加上“十”)

  -3、-2、-0.5、- 等是负数。

  4、数0既不是正,也不是负数,0是正数和负数的分界。

  0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

  5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。

  巩固提高:练习:课本P5练习

  课时小结:这节课我们学习了哪些知识?你能说一说吗?

  课后作业:课本P7习题1.1的第1、2、4、5题。

  活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。

  (1)美美得95分,应记为多少?

  (2)多多被记作一12分,他实际得分是多少?

  课后反思

  1.1.2正数和负数

  教学目的:

  (一)知识点目标:

  1.了解正数和负数在实际生活中的应用。

  2.深刻理解正数和负数是反映客观世界中具有相反意义的理。

  3.进一步理解0的特殊意义。

  (二)能力训练目标:

  1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。

  2.熟练地用正、负数表示具有相反意义的量。

  (三)情感与价值观要求:

  通过师生合作,联系实际,激发学生学好数学的热情。

  教学重点:能用正、负数表示具有相反意义的量。

  教学难点:进一步理解负数、数0表示的量的意义。

  教学方法:小组合作、师生互动。

  教学过程:

  创设问题情境,引入新课:分小组派代表,注意数学语言规范。

  1.认真想一想,你能用学过的知识解决下列问题吗?

  某零件的直径在图纸上注明是 ,单位是毫米,这样标注表示零件直径的标准尺寸是        毫米,加工要求直径最大可以是         毫米,最小可以是     毫米。

  2.下列说法中正确的(        )

  A、带有“一”的数是负数;    B、0℃表示没有温度;

  C、0既可以看作是正数,也可以看作是负数。

  D、0既不是正数,也不是负数。

  [师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。

  讲授新课:

  例1. 仔细找一找,找了具有相反意义的量:

  甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。

  例2 (1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;

  (2)2001年下列国家的商品进出口总额比上年的变化情况是:

  美国减少6.4%,德国增长1.3%,法国减少2.4%,

  英国减少3.5%,意大利增长0.2%,中国增长7.5%。

  写出这些国家2001年商品进出口总额的增长率。

  例3. 下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?

  例4. 小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?

  复习巩固:练习:课本P6  练习

  课时小结:这节课我们学习了哪些知识?你能说一说吗?

  课后作业:课本P7习题1.1 的第3、6、7、8题。

  活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?

热门文章