初中数学试讲教案《一元二次方程复习》

教案 时间:2017-08-11 编辑:陈平 手机版
【www.ruiwen.com - 教案】

  只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。下面,小编为大家分享初中数学试讲教案《一元二次方程复习》,希望对大家有所帮助!

  试讲人:XXX

  知识点:二元一次方程的概念及一般形式,二次项系数、一次项系数、常数项、判别式、一元二次方程解法

  重点、难点:二元一次方程四种解法,直接开平方、配方法、公式法、因式分解法

  教学形式:例题演示,加深印象!学完即用,巩固记忆!你问我答,有来有往!

  1、自我介绍:30s

  大家下午好!我叫XXX,20XX年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!

  2、一元二次方程概念、系数、根的判别式:8min30s

  我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:

  (1)x -10x+9=0 是 1 -10 9

  (2)x +2=0 是 1 0 2

  (3)ax +bx+c=0 不是 a必须不等于0(追问为什么)

  (4)3x -5x=3x 不是 整理式子得-5x=0所以为一元一次方程(追问为什么) 好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!

  一元:只含一个未知数

  二次:含未知数项的最高次数为2

  方程:一个等式

  一元二次方程的一般形式为:ax +bx+c=0 (a ≠0)其中,a 为二次项系数、b 为一次项系数、c 为常数项。记住,a 一定不为0,b 、c 都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式! 至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac 的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ<0时,方程无实根。 那我们在求方程根之前先利用Δ判断一下根的情况,如果小于0,那么就直接判断无解,如果大于等于0,则需要进一步求方程根。

  3、一元二次方程的解法:20min

  那说到求方程的根我们究竟学了几种求一元二次方程根的方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理~

  (1)直接开方法

  遇到形如x =n的二元一次方程,可以直接使用开方法来求解。若n <0,方程无解;若n=0,则x=0,若n >0, 则x=±n 。同学们能明白吗?

  (2)配方法

  大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:

  简单的一眼看出来的:x -2x+1=0 (x-1)=0(让同学回答)

  需要变换的:2x +4x-8=0

  步骤:将二次项系数化为1,左右同除2得:x +2x-4=0

  将常数项移到等号右边得:x +2x=4

  左右同时加上一次项系数一半的平方得:x +2x+1=4+1

  所以有方程为:(x+1)=5 形似 x=n

  然后用直接开平方解得x+1=±5 x=±5-1

  大家能听懂吗?现在我们一起来做一道练习题,2min 时间,大家一起报个答案给我!

  题目:1/2x-5x-1=0 答案:x=±+5

  大家都会做吗?还需要讲解详细步骤吗?

  (3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc ,没有公式法求不出来的解,当然啦,除非是无解~

  首先,公式法里面的公式大家还记得吗?

  x=(-b ±2-4ac )/2a

  这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x 的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。 我们来做一道简单的例题:

  3x -2x-4=0

  其中a=3,b=-2,c=-4

  带入公式得:x=((-(-2))± 2) 2-4*(-4)*3/(2*3)

  化简得:x1=(1-)/3 x2=(1+)/3

  同学们你们解对了吗?

  使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~

  (4)今天的第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!

  简单来说,因式分解就是将多项式化为式子的乘积形式。

  比如说ab+ab 可以化成ab (1+a)的乘积形式。

  那么对于二元一次方程,我们的目标是要将其化成(mx+a)*(nx+b)=0 这样就可以解出x=-a/m x=-b/n

  我们一起做一个例题巩固一下:4x +5x+1=0

  则可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0

  所以有x=-1 x=-1/4

  同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。 练习题:x -5x+6=0 x=2 x=3

  x-9=0 x=3 x=-3

  4、总结:1min

  好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc 系数,会用Δ=b-4ac 来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!


[初中数学试讲教案《一元二次方程复习》]相关文章:

1.what color is it试讲教案

2.秋天的怀念试讲教案

3.语文试讲教案模板

4.烛之武退秦师试讲教案

5.幼儿园教案试讲

6.拼读复习教案

7.报任安书教案

8.小班油画棒教案

9.分数与除法教案

10.《ie üe er》教案

本文已影响
热门文章