示波器实验报告

时间:2020-12-04 17:28:40 报告 我要投稿

示波器实验报告

  不少朋友都不会写示波器实验报告,那么,今天,CN人才公文网小编给大家介绍的是示波器实验报告,希望对大家有帮助。

示波器实验报告

  示波器实验报告

  【实验题目】 示波器的原理和使用

  【实验目的】

  1.了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。

  2.学会使用示波器观测电信号波形和电压副值以及频率。

  3.学会使用示波器观察李萨如图并测频率。

  【实验原理】

  1.示波器都包括几个基本组成部分:

  示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。

  2.李萨如图形的原理:

  如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。

  如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。

  【实验仪器】

  示波器×1,信号发生器×2,信号线×2。

  【实验内容】

  1.基础操作:

  了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。

  明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。

  2.观测李萨如图形:

  向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“X-Y”方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。

  设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较,一一求出它们的相对误差。

  【实验数据】

  【实验结果】

  【误差分析】

  1.两台信号发生器不协调。

  2.桌面振动造成的影响。

  3.示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。

  4.取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准。

  5.机器系统存在系统误差。

  6.fy选取时上下跳动,可能取值不准。

  相关知识

  1 示波器工作原理

  示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

  1.1 示波管

  阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

  1.荧光屏

  现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。

  当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

  由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。

  2.电子枪及聚焦

  电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。

  电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。

  3.偏转系统

  偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

  4.示波管的电源

  为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

  1.2 示波器的基本组成

  从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

  示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。

  被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

  以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别